From LP to LP: Programming with Constraints

Constraint methods for problem solving have a long history. Recently the problem of introducing constraints as primitive constructs in programming languages has been addressed. A main task that the designers and implementers of such languages face is to use and adapt the concepts and algorithms from the extensive studies on constraints done in areas such as Mathematical Programming, Symbolic Computation, Artificial Intelligence, Program Verification and Computational Geometry. Borrowing from these areas and synthesizing the various notions leads to an emerging conception of programming with constraints that we will describe here informally.

[1]  Lou van den Dries,et al.  Alfred Tarski's Elimination Theory for Real Closed Fields , 1988, J. Symb. Log..

[2]  Jean-Louis Lassez,et al.  Fourier Algorithm Revisited , 1990, ALP.

[3]  Catherine Lassez,et al.  A linear constraint technology for interactive graphic systems , 1992 .

[4]  Bruno Buchberger,et al.  History and Basic Features of the Critical-Pair/Completion Procedure , 1987, J. Symb. Comput..

[5]  Leo Joskowicz,et al.  Reasoning About Linear Constraints Using Parametric Queries , 1990, FSTTCS.

[6]  Joxan Jaffar,et al.  Methodology and Implementation of a CLP System , 1987, ICLP.

[7]  Pascal Van Hentenryck Constraint satisfaction in logic programming , 1989, Logic programming.

[8]  Robert E. Shostak,et al.  On the SUP-INF Method for Proving Presburger Formulas , 1977, JACM.

[9]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[10]  Alan Borning,et al.  The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory , 1981, TOPL.

[11]  R. Duffin On fourier’s analysis of linear inequality systems , 1974 .

[12]  Jean-Louis Lassez,et al.  A constraint sequent calculus , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[13]  James H. Davenport,et al.  Computer Algebra: Systems and Algorithms for Algebraic Computation , 1988 .

[14]  Deepak Kapur,et al.  Geometric reasoning , 1989 .

[15]  Frank M. Brown,et al.  Boolean reasoning - the logic of boolean equations , 1990 .

[16]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[17]  Franz Winkler,et al.  Knuth-Bendix procedure and Buchberger algorithm: a synthesis , 1989, ISSAC '89.

[18]  Michael J. Maher,et al.  Unification Revisited , 1988, Foundations of Deductive Databases and Logic Programming..

[19]  Jean-Paul Laumond,et al.  Geometry and Robotics , 1989, Lecture Notes in Computer Science.

[20]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[21]  Joxan Jaffar,et al.  From Unification to Constraints , 1987, LP.

[22]  Jean-Louis Lassez,et al.  Querying constraints , 1990, PODS '90.

[23]  Martin Odersky,et al.  Constraint-based query optimization for spatial databases , 1991, PODS '91.

[24]  Dennis S. Arnon,et al.  Towards a Deductive Database for Elementary Algebra and Geometry , 1990, Workshop on Deductive Databases.

[25]  Jean-Louis Lassez,et al.  Simplification and Elimination of Redundant Linear Arithmetic Constraints , 1989, NACLP.

[26]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[27]  Michael J. Maher,et al.  Expanding Query Power in Constraint Logic Programming Languages , 1989, NACLP.

[28]  Dennis S. Arnon,et al.  Geometric Reasoning with Logic and Algebra , 1988, Artif. Intell..

[29]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[30]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[31]  W. Bledsoe A new method for proving certain Presburger formulas , 1975, IJCAI 1975.

[32]  Joxan Jaffar,et al.  Constraint logic programming , 1987, POPL '87.

[33]  I. Rosenberg,et al.  Application of pseudo-Boolean programming to the theory of graphs , 1964 .

[34]  Jean-Louis Lassez,et al.  A Canonical Form for Generalized Linear Constraints , 1992, J. Symb. Comput..

[35]  Jean H. Gallier,et al.  Hornlog: A Graph-Based Interpreter for General Horn Clauses , 1987, J. Log. Program..

[36]  Akira Aiba,et al.  CAL: A Theoretical Background of Constraint Logic Programming and its Applications , 1988, J. Symb. Comput..