In vitro growth of iron sulphide chimneys: possible culture chambers for origin‐of‐life experiments

Iron monosulphide globules and tubes grown in the laboratory have similar morphologies to the fossil pyrite botryoids and chimneys found in the Silvermines exhalative sedimentary ore-body of Carboniferous age in Ireland. We envisage analogous fine structures growing at hot springs (100–200°C) in the earliest oceans as having provided the culture chambers and flow reactors for life to originate by phosphorylation and growth of organic molecules on the iron sulphide surfaces. Such sulphide structures grown in the laboratory could be used in origin-of-life experiments.

[1]  G. Wächtershäuser,et al.  Before enzymes and templates: theory of surface metabolism. , 1988, Microbiological reviews.

[2]  J. García‐Ruiz On the formation of induced morphology crystal aggregates , 1985 .

[3]  R. Haymon Growth history of hydrothermal black smoker chimneys , 1983, Nature.

[4]  Anthony J. Martin,et al.  Archean abiogenic and probable biogenic structures associated with mineralized hydrothermal vent systems and regional metasomatism, with implications for greenstone belt studies , 1982 .

[5]  M. J. Russell,et al.  Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland , 1983, Nature.

[6]  H. T. Evans,et al.  The crystal structure of erdite, NaFeS 2 .2H 2 O , 1980 .

[7]  E. Nisbet The continental and oceanic crust and lithosphere in the Archaean: isostatic, thermal, and tectonic models , 1984 .

[8]  A. Cairns-smith Genetic takeover and the mineral origins of life , 1982 .

[9]  N. L. Thomas,et al.  Studies of the growth of “silicate gardens” and related phenomena , 1980 .

[10]  G. Czamanske,et al.  New data on rasvumite and djerfisherite , 1979 .

[11]  B. F. Leonard,et al.  Erdite, a new hydrated sodium iron sulfide mineral , 1980 .

[12]  B. Henderson-Sellers,et al.  Equable climate in the early Archaean , 1988, Nature.

[13]  G. F. Joyce RNA evolution and the origins of life , 1989, Nature.

[14]  L. Cathles,et al.  The influence of plate movement on the evolution of hydrothermal convection cells in the oceanic crust , 1986 .

[15]  D. Banks A fossil hydrothermal worm assemblage from the Tynagh lead–zinc deposit in Ireland , 1985, Nature.

[16]  Roger N. Anderson,et al.  The mechanisms of heat transfer through the floor of the Indian Ocean , 1977 .

[17]  J. R. O'neil,et al.  The Relationship between Fluids in Some Fresh Alpine-Type Ultramafics and Possible Modern Serpentinization, Western United States , 1969 .

[18]  A. Hall Pyrite-pyrrhotine redox reactions in nature , 1986, Mineralogical Magazine.

[19]  T. Owen,et al.  Mars and Earth: Origin and Abundance of Volatiles , 1977, Science.

[20]  A. Cairns-smith,et al.  Submarine hot springs and the origin of life , 1988, Nature.

[21]  H. D. Holland,et al.  The Oceans; A Possible Source of Iron in Iron-Formations , 1973 .

[22]  S. Honjo,et al.  Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa , 1972 .

[23]  Y. Guéguen,et al.  Percolation in the Crust , 1989 .

[24]  H. Barnes,et al.  Marcasite precipitation from hydrothermal solutions , 1986 .

[25]  S. Hart,et al.  Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget , 1983 .

[26]  J. Baross,et al.  An Hypothesis Concerning the Relationships Between Submarine Hot Springs and the Origin of Life on Earth , 1981 .

[27]  A. Boyce,et al.  Hydrothermal pyrite chimneys from the Ballynoe baryte deposit, Silvermines, County Tipperary, Ireland , 1981 .

[28]  G. Wächtershäuser,et al.  Pyrite Formation, the First Energy Source for Life: a Hypothesis , 1988 .

[29]  J. Bada,et al.  Submarine hot springs and the origin of life , 1988, Nature.

[30]  D. Groves,et al.  Nickel sulfide deposits in Western Australia; a review , 1981 .

[31]  Ian William Wark The Physical Chemistry of Flotation , 1932 .

[32]  J. Leja Surface Chemistry of Froth Flotation , 1982 .