Approximately solving multi-valued variational inequalities by using a projection and contraction algorithm

A projection and contraction algorithm for solving multi-valued variational inequalities is proposed. The algorithm is proved to converge globally to a solution of a given multi-valued variational inequality under standard conditions. We present an analysis of the convergence rate. Finally, preliminary computational experiments illustrate the advantage of the proposed algorithm.

[1]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[2]  T. Q. Bao,et al.  A Projection-Type Algorithm for Pseudomonotone Nonlipschitzian Multivalued Variational Inequalities , 2005 .

[3]  B. He A class of projection and contraction methods for monotone variational inequalities , 1997 .

[4]  Nan-Jing Huang,et al.  A Projection-Proximal Point Algorithm for Solving Generalized Variational Inequalities , 2011, J. Optim. Theory Appl..

[5]  Heinz H. Bauschke,et al.  Projection and proximal point methods: convergence results and counterexamples , 2004 .

[6]  Bingsheng He,et al.  On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators , 2013, Computational Optimization and Applications.

[7]  N. Xiu,et al.  Some recent advances in projection-type methods for variational inequalities , 2003 .

[8]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[9]  Yiran He,et al.  A double projection method for solving variational inequalities without monotonicity , 2014, Computational Optimization and Applications.

[10]  Z. Luo A Class of Iterative Methods for Solving Nonlinear Projection Equations , 2005 .

[11]  Abdellah Bnouhachem A self-adaptive method for solving general mixed variational inequalities , 2005 .

[12]  Lu-Chuan Zeng,et al.  A PROXIMAL METHOD FOR PSEUDOMONOTONE TYPE VARIATIONAL-LIKE INEQUALITIES , 2006 .

[13]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[14]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[15]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[16]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[17]  Rainer Tichatschke,et al.  Relaxed proximal point algorithms for variational inequalities with multi-valued operators , 2008, Optim. Methods Softw..

[18]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[19]  Lu-Chuan Zeng,et al.  STRONG CONVERGENCE THEOREMS FOR STRICTLY PSEUDOCONTRACTIVE MAPPINGS OF BROWDER-PETRYSHYN TYPE , 2006 .

[20]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[21]  Igor V. Konnov,et al.  A combined relaxation method for variational inequalities with nonlinear constraints , 1998, Math. Program..

[22]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[23]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[24]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[25]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[26]  Changjie Fang,et al.  A subgradient extragradient algorithm for solving multi-valued variational inequality , 2014, Appl. Math. Comput..

[27]  G. Fichera,et al.  Problemi elastostatici con ambigue condizioni al contorno , 2011 .

[28]  Muhammad Aslam Noor,et al.  Some developments in general variational inequalities , 2004, Appl. Math. Comput..

[29]  Yair Censor,et al.  Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space , 2012 .

[30]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[31]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[32]  F. Browder Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces , 1965 .

[33]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..