Introduction to Atomic Force Microscopy (AFM) in Biology

The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer‐ to angstrom‐scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to “stay alive” within a physiological‐like environment while temporal changes in structure are measured—e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. Curr. Protoc. Protein Sci. 58:17.7.1‐17.7.19. © 2009 by John Wiley & Sons, Inc.

[1]  H. Stahlberg,et al.  Bacterial Na+‐ATP synthase has an undecameric rotor , 2001, EMBO reports.

[2]  A. Engel,et al.  The bacteriophage φ29 head–tail connector imaged at high resolution with the atomic force microscope in buffer solution , 1997, The EMBO journal.

[3]  J. Killian,et al.  Visualization of highly ordered striated domains induced by transmembrane peptides in supported phosphatidylcholine bilayers. , 2000, Biochemistry.

[4]  Z. Shao,et al.  High resolution surface structure of E. coli GroES oligomer by atomic force microscopy , 1996, FEBS letters.

[5]  M. Radmacher,et al.  Imaging soft samples with the atomic force microscope: gelatin in water and propanol. , 1995, Biophysical journal.

[6]  M. Gray,et al.  Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[7]  A. Engel,et al.  The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. , 1997, Biophysical journal.

[8]  P. Wagner Immobilization strategies for biological scanning probe microscopy 1 , 1998 .

[9]  Daniel J. Müller,et al.  Observing single biomolecules at work with the atomic force microscope , 2000, Nature Structural Biology.

[10]  R Balhorn,et al.  Tip-radius-induced artifacts in AFM images of protamine-complexed DNA fibers. , 1992, Ultramicroscopy.

[11]  A. Oberhauser,et al.  The micro‐mechanics of single molecules studied with atomic force microscopy , 1999, The Journal of physiology.

[12]  Henning Stahlberg,et al.  Structural biology: Proton-powered turbine of a plant motor , 2000, Nature.

[13]  U. Aebi,et al.  Watching amyloid fibrils grow by time-lapse atomic force microscopy. , 1999, Journal of molecular biology.

[14]  A. Engel,et al.  Adsorption of biological molecules to a solid support for scanning probe microscopy. , 1997, Journal of structural biology.

[15]  Gerber,et al.  Atomic force microscope. , 1986, Physical review letters.

[16]  P K Hansma,et al.  Escherichia coli RNA polymerase activity observed using atomic force microscopy. , 1997, Biochemistry.

[17]  A. McPherson,et al.  Atomic force microscopy applications in macromolecular crystallography. , 2001, Acta crystallographica. Section D, Biological crystallography.

[18]  A. Engel,et al.  Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. , 1995, Science.

[19]  P. Tittmann,et al.  Surface analysis of the photosystem I complex by electron and atomic force microscopy. , 1998, Journal of molecular biology.

[20]  H. Craighead,et al.  Mechanical resonant immunospecific biological detector , 2000 .

[21]  Atomic force microscopy in the study of macromolecular crystal growth. , 2000, Annual review of biophysics and biomolecular structure.

[22]  Ueli Aebi,et al.  Tensile properties of single desmin intermediate filaments. , 2008, Biophysical journal.

[23]  R. Tampé,et al.  High-resolution AFM-imaging and mechanistic analysis of the 20 S proteasome. , 1999, Journal of molecular biology.

[24]  J. Hoh,et al.  Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. , 1994, Biophysical journal.

[25]  J. Fritz,et al.  Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Wolfgang J. Parak,et al.  Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope , 1999, European Biophysics Journal.

[27]  A. Engel,et al.  Reproducible acquisition of Escherichia coli porin surface topographs by atomic force microscopy. , 1994, Biophysical journal.

[28]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[29]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[30]  P. Wagner Immobilization strategies for biological scanning probe microscopy. , 1998, FEBS letters.

[31]  H. Gaub,et al.  Unfolding pathways of individual bacteriorhodopsins. , 2000, Science.

[32]  M. Borgnia,et al.  High resolution AFM topographs of the Escherichia coli water channel aquaporin Z , 1999, The EMBO journal.

[33]  Z. Shao,et al.  Submolecular resolution of single macromolecules with atomic force microscopy , 1998, FEBS letters.

[34]  W. Han,et al.  Biomolecular force measurements and the atomic force microscope. , 2002, Current opinion in biotechnology.

[35]  M. Viani,et al.  Small cantilevers for force spectroscopy of single molecules , 1999 .

[36]  A. Engel,et al.  Surface tongue-and-groove contours on lens MIP facilitate cell-to-cell adherence. , 2000, Journal of molecular biology.

[37]  A. Ikai,et al.  Mechanical unfolding of a2‐macroglobulin molecules with atomic force microscope , 1996 .

[38]  D. Keller,et al.  Scanning force microscopy under aqueous solutions. , 1997, Current opinion in structural biology.

[39]  H. Gruber,et al.  Unbinding molecular recognition force maps of localized single receptor molecules by atomic force microscopy. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  P K Hansma,et al.  Direct observation of enzyme activity with the atomic force microscope. , 1994, Science.

[41]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[42]  J Langowski,et al.  Assessing the flexibility of intermediate filaments by atomic force microscopy. , 2004, Journal of molecular biology.

[43]  U. Aebi,et al.  Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. , 2004, Journal of molecular biology.

[44]  Peter Hinterdorfer,et al.  Antibody recognition imaging by force microscopy , 1999, Nature Biotechnology.

[45]  A. Engel,et al.  Sampling the conformational space of membrane protein surfaces with the AFM , 2002, European Biophysics Journal.

[46]  A. Engel,et al.  Charting and unzipping the surface layer of Corynebacterium glutamicum with the atomic force microscope , 2002, Molecular microbiology.

[47]  D. Czajkowsky,et al.  The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  U. Aebi,et al.  Atomic force microscopy of Mammalian urothelial surface. , 2007, Journal of molecular biology.

[49]  A. Oberhauser,et al.  The study of protein mechanics with the atomic force microscope. , 1999, Trends in biochemical sciences.

[50]  S. Scheuring,et al.  High‐resolution AFM topographs of Rubrivivax gelatinosus light‐harvesting complex LH2 , 2001, The EMBO journal.

[51]  A. Engel,et al.  Imaging streptavidin 2D crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope , 1999, Journal of microscopy.

[52]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[53]  M. Belaya,et al.  Theory of electrostatic effects in soft biological interfaces using atomic force microscopy. , 1996, Biophysical journal.

[54]  C. H. Chen,et al.  Structures and dynamic motion of laminin-1 as observed by atomic force microscopy. , 1998, Biochemistry.

[55]  U G Hofmann,et al.  Investigating the cytoskeleton of chicken cardiocytes with the atomic force microscope. , 1997, Journal of structural biology.

[56]  U Aebi,et al.  Monitoring biomolecular interactions by time-lapse atomic force microscopy. , 2000, Journal of structural biology.

[57]  Charles M. Lieber,et al.  Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Ami Chand,et al.  Probing protein–protein interactions in real time , 2000, Nature Structural Biology.

[59]  Z Shao,et al.  Visualizing filamentous actin on lipid bilayers by atomic force microscopy in solution , 2001, Journal of microscopy.

[60]  M. Davies,et al.  In situ observation of streptavidin‐biotin binding on an immunoassay well surface using an atomic force microscope , 1996, FEBS letters.

[61]  A. Tonevitsky,et al.  Atomic force microscope (AFM) combined with the ultramicrotome: a novel device for the serial section tomography and AFM/TEM complementary structural analysis of biological and polymer samples , 2007, Journal of microscopy.

[62]  J. Neumeister,et al.  Lateral, normal, and longitudinal spring constants of atomic force microscopy cantilevers , 1994 .

[63]  C. Mirkin,et al.  Protein Nanoarrays Generated By Dip-Pen Nanolithography , 2002, Science.

[64]  Ueli Aebi,et al.  Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. , 2004, Biophysical journal.

[65]  A. Engel,et al.  Mapping flexible protein domains at subnanometer resolution with the atomic force microscope , 1998, FEBS letters.

[66]  B. Sakmann,et al.  A look at membrane patches with a scanning force microscope. , 1995, Biophysical journal.

[67]  J. Hoh,et al.  Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy , 1996 .

[68]  Daniel J. Müller,et al.  Atomic force microscopy: A forceful way with single molecules , 1999, Current Biology.

[69]  M. Hegner,et al.  Specific antigen/antibody interactions measured by force microscopy. , 1996, Biophysical journal.

[70]  H. Gaub,et al.  Unfolding forces of titin and fibronectin domains directly measured by AFM. , 2000, Advances in experimental medicine and biology.

[71]  A. Engel,et al.  Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. , 1999, Biophysical journal.

[72]  Piotr E. Marszalek,et al.  Stretching single molecules into novel conformations using the atomic force microscope , 2000, Nature Structural Biology.

[73]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[74]  W F Heinz,et al.  Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. , 1999, Trends in biotechnology.

[75]  W Baumeister,et al.  Controlled unzipping of a bacterial surface layer with atomic force microscopy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Rief,et al.  Reversible unfolding of individual titin immunoglobulin domains by AFM. , 1997, Science.

[77]  C. Bustamante,et al.  Facilitated Target Location on DNA by IndividualEscherichia coli RNA Polymerase Molecules Observed with the Scanning Force Microscope Operating in Liquid* , 1999, The Journal of Biological Chemistry.

[78]  J. Clarke,et al.  Mechanical and chemical unfolding of a single protein: a comparison. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Z. Shao,et al.  Chaperonins GroEL and GroES: views from atomic force microscopy. , 1996, Biophysical journal.

[80]  A. Engel,et al.  Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. , 1993, Biophysical journal.

[81]  H Schindler,et al.  Simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy. , 1998, Biophysical journal.

[82]  M. Radmacher,et al.  Protein tracking and detection of protein motion using atomic force microscopy. , 1996, Biophysical journal.

[83]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[84]  H. Hansma,et al.  Properties of biomolecules measured from atomic force microscope images: a review. , 1997, Journal of structural biology.

[85]  A Ikai,et al.  [Biological applications of atomic force microscopy]. , 1994, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[86]  Ulrich S. Schwarz,et al.  Probing cellular microenvironments and tissue remodeling by atomic force microscopy , 2008, Pflügers Archiv - European Journal of Physiology.

[87]  Devrim Pesen,et al.  Micromechanical architecture of the endothelial cell cortex. , 2005, Biophysical journal.

[88]  Charles M. Cuerrier,et al.  AFM as a tool to probe and manipulate cellular processes , 2008, Pflügers Archiv - European Journal of Physiology.

[89]  Shirley A. Müller,et al.  Single proteins observed by atomic force microscopy , 2001 .

[90]  Z. Shao,et al.  Atomic force microscopy of cholera toxin B-oligomers bound to bilayers of biologically relevant lipids. , 1995, Journal of molecular biology.

[91]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[92]  J.,et al.  Imaging streptavidin 2 D-crystals on biotinylated lipid monolayers at high resolution with the atomic force microscope , 1999 .

[93]  M Radmacher,et al.  Measuring the elastic properties of biological samples with the AFM. , 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[94]  Brisson,et al.  Growth of Protein 2-D Crystals on Supported Planar Lipid Bilayers Imaged in Situ by AFM. , 1998, Journal of structural biology.

[95]  J. Sader,et al.  Calibration of rectangular atomic force microscope cantilevers , 1999 .

[96]  N. Severin,et al.  Manipulation and Overstretching of Genes on Solid Substrates , 2004 .

[97]  Helmut Grubmüller,et al.  Force spectroscopy of single biomolecules. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[98]  A. Engel,et al.  Preparation techniques for the observation of native biological systems with the atomic force microscope , 1997 .

[99]  R Hegerl,et al.  Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[100]  U. Aebi,et al.  Visualizing the growth of Alzheimer's Aβ amyloid-like fibrils , 2001 .

[101]  H. Gaub,et al.  Force spectroscopy with single bio-molecules. , 2000, Current opinion in chemical biology.