Simulation input modeling

Discrete-event simulation models typically have stochastic components that mimic the probabilistic nature of the system under consideration. Successful input modeling requires a close match between the input model and the true underlying probabilistic mechanism associated with the system. The general question considered is how to model an element (e.g., arrival process, service times) in a discrete-event simulation given a data set collected on the element of interest. For brevity, it is assumed that data is available on the aspect of the simulation of interest. It is also assumed that raw data is available, as opposed to censored data, grouped data, or summary statistics. Most simulation texts (e.g., Law and Kelton, 1991) have a broader treatment of input modeling than presented in the paper. Nelson et al. (1995) and Nelson and Yamnitsky (1998) survey advanced techniques.

[1]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[2]  James R. Wilson Modeling dependencies in stochastic simulation inputs , 1997, WSC '97.

[3]  P. Dean Simulation of Experiments. , 1972 .

[4]  Paul Bratley,et al.  A guide to simulation (2nd ed.) , 1986 .

[5]  Paul Bratley,et al.  A guide to simulation , 1983 .

[6]  Barry L. Nelson,et al.  Input modeling when simple models fail , 1995, WSC '95.

[7]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[8]  Andrew G. Glen,et al.  APPL: A Probability Programming Language , 2001 .

[9]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[10]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[11]  James R. Wilson,et al.  Using Univariate Bezier Distributions to Model Simulation Input Processes , 1996, Proceedings of 1993 Winter Simulation Conference - (WSC '93).

[12]  James R. Wilson,et al.  Using univariate Be´zier distributions to model simulation input processes , 1993, WSC '93.

[13]  Barry L. Nelson,et al.  Input modeling tools for complex problems , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[14]  Melba M. Crawford,et al.  Modeling and simulation of a nonhomogeneous poisson process having cyclic behavior , 1991 .

[15]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[16]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[17]  L. Leemis Applied Linear Regression Models , 1991 .

[18]  L. Leemis,et al.  Nonparametric Estimation of the Cumulative Intensity Function for a Nonhomogeneous Poisson Process from Overlapping Realizations , 2000 .

[19]  Stephen D. Roberts,et al.  A time-varying Poisson arrival process generator , 1984 .

[20]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[21]  Sheldon M. Ross,et al.  Introduction to probability models , 1975 .

[22]  James R. Wilson,et al.  Using bivariate Bézier distributions to model simulation input processes , 1994, Winter Simulation Conference.