Polymer Microelectromechanical Systems: Fabrication and Applications in Biology and Biological Force Measurements

Polymer materials are increasingly being utilized in biomedical microand nanotechnolgy applications. This trend has been driven by a several factors ranging from materials compatibility to cost. The manufacturing techniques used to produce these devices are considerably less mature than their silicon-based counterparts. New manufacturing techniques are needed to address unique processing challenges posed by polymer materials. To this end, we have developed a set of soft lithography based micromolding techniques for fabrication of polymer microstructures and devices from a wide range of materials. Materials include common thermoplastic polymers such as poly(methyl methacrylate) (PMMA) and polystyrene as well as functional materials such as conducting polymers. The processing techniques developed through this work are capable of producing a wide range of structures including continuous microstructured films, isolated polymer microstructures, and suspended structures. The nature of the materials and the non-cleanroom based micromolding processes makes these techniques considerably more cost effective with respect to both materials and processing costs. In addition to developing processing techniques, characterization of the processes as well as the materials is a critical step for implementation of polymers in practical device applications. Process characterization was performed by systematically varying process parameters and evaluating the resulting microstructures using common micro-

[1]  Aravind Chakrapani Processing and characterization of polymer microparticles for controlled drug delivery systems , 2006 .

[2]  A. Mau,et al.  Conjugated polymers for light-emitting applications , 2001 .

[3]  J. Parsons,et al.  Cell Migration--Movin' On , 1999, Science.

[4]  P. Schiff,et al.  Taxol stabilizes microtubules in mouse fibroblast cells. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Cima,et al.  A controlled-release microchip , 1999, Nature.

[6]  Derek J. Hansford,et al.  Polymer microparticles fabricated by soft lithography , 2005 .

[7]  B. Bhushan,et al.  A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications , 2002 .

[8]  F. Gao Clay/polymer composites: the story , 2004 .

[9]  D. Ingber,et al.  Mechanotransduction across the cell surface and through the cytoskeleton , 1993 .

[10]  S. Bhatia,et al.  Tissue Engineering at the MicroScale , 2000 .

[11]  Shang-Tian Yang,et al.  Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. , 2005, Biomaterials.

[12]  C. Lim,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[13]  Bharat Bhushan,et al.  Nanomechanical characterization of polymer beam structures for BioMEMS applications , 2007 .

[14]  M. Dembo,et al.  Stresses at the cell-to-substrate interface during locomotion of fibroblasts. , 1999, Biophysical journal.

[15]  Bogdan Marculescu,et al.  Adhesion between PMMA mask layer and silicon wafer in KOH aqueous solution , 1998, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[16]  M. Ferrari,et al.  Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications , 1999 .

[17]  E. Lane,et al.  Keratins and skin disorders , 2004, The Journal of pathology.

[18]  Benjamin Geiger,et al.  Cell mechanosensitivity controls the anisotropy of focal adhesions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Engel,et al.  Polymer micromachined multimodal tactile sensors , 2005 .

[20]  B. Berk,et al.  Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. , 1998, Arteriosclerosis, thrombosis, and vascular biology.

[21]  M. Dembo,et al.  Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. , 2001, Biophysical journal.

[22]  Asha Chaubey,et al.  Application of conducting polymers to biosensors. , 2002, Biosensors & bioelectronics.

[23]  Toshiro Ohashi,et al.  Remodeling of vascular endothelial cells exposed to fluid shear stress: experimental and numerical approach , 2005 .

[24]  Mehran Mehregany,et al.  SiC MEMS: Opportunities and challenges for applications in harsh environments , 1999 .

[25]  K. Guarini,et al.  High-Resolution Inkjet Printing of All-Polymer Transistor Circuits , 2009 .

[26]  C Rotsch,et al.  Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. , 2000, Biophysical journal.

[27]  D. Bodas,et al.  Comparative study of spin coated and sputtered PMMA as an etch mask material for silicon micromachining , 2005 .

[28]  G. Whitesides,et al.  Fabrication of three‐dimensional micro‐structures: Microtransfer molding , 1996 .

[29]  M. Stamm,et al.  Dewetting of Thin Polymer Films: an X-ray Scattering Study , 1998 .

[30]  A. J. Epstein,et al.  Synthesis and Physical Properties of Highly Sulfonated Polyaniline , 1996 .

[31]  P. Hebda,et al.  Prostaglandin E2 differentially modulates human fetal and adult dermal fibroblast migration and contraction: implication for wound healing , 2006, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[32]  Antonio J. Ricco,et al.  Plastic Microfluidic Systems for High-Throughput Genomic Analysis and Drug Screening , 2001 .

[33]  Yanchun Han,et al.  How to form regular polymer microstructures by surface-pattern-directed dewetting , 2003 .

[34]  Hubert Lorenz,et al.  3D microfabrication by combining microstereolithography and thick resist UV lithography , 1999 .

[35]  D E Ingber,et al.  Using microcontact printing to pattern the attachment of mammalian cells to self-assembled monolayers of alkanethiolates on transparent films of gold and silver. , 1997, Experimental cell research.

[36]  Ali Khademhosseini,et al.  A simple soft lithographic route to fabrication of poly(ethylene glycol) microstructures for protein and cell patterning. , 2004, Biomaterials.

[37]  Derek J. Hansford,et al.  Simultaneous fabrication of hybrid arrays of nanowires and micro/nanoparticles by dewetting on micropillars. , 2007, Soft matter.

[38]  A. Karim,et al.  Pattern-Directed Dewetting of Ultrathin Polymer Films , 2002 .

[39]  Reinhard Lipowsky,et al.  Morphological Transitions of Wetting Layers on Structured Surfaces , 1998 .

[40]  D J Beebe,et al.  Microfabricated elastomeric stencils for micropatterning cell cultures. , 2000, Journal of biomedical materials research.

[41]  G. Beyer Nanocomposites: a new class of flame retardants for polymers , 2002 .

[42]  Holger Becker,et al.  Polymer microfabrication technologies for microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[43]  M Vijayan,et al.  Biosensing and drug delivery by polypyrrole. , 2006, Analytica chimica acta.

[44]  Ogobara K. Doumbo,et al.  The pathogenic basis of malaria , 2002, Nature.

[45]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[46]  H. Braun,et al.  Controlled dewetting processes on microstructured surfaces – a new procedure for thin film microstructuring , 2000 .

[47]  Arthur J. Epstein,et al.  Effect of sulfonic acid group on polyaniline backbone , 1991 .

[48]  David G Lidzey,et al.  Photoprocessed and micropatterned conjugated polymer LEDs , 1996 .

[49]  A. Harris,et al.  Silicone rubber substrata: a new wrinkle in the study of cell locomotion. , 1980, Science.

[50]  J. Condeelis,et al.  Regulation of the actin cytoskeleton in cancer cell migration and invasion. , 2007, Biochimica et biophysica acta.

[51]  D. Hansford,et al.  Spatial and geometrical control of silicification using a patterned poly-L-lysine template , 2006 .

[52]  B J Schwartz,et al.  Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. , 1998, Optics letters.

[53]  Tejal A. Desai,et al.  Microfabrication of Multilayer, Asymmetric, Polymeric Devices for Drug Delivery , 2005 .

[54]  Dimitrios Niarchos,et al.  Magnetic MEMS: key issues and some applications , 2003 .

[55]  Joseph L. Keddie,et al.  Size-Dependent Depression of the Glass Transition Temperature in Polymer Films , 1994 .

[56]  D. Meyerhofer Characteristics of resist films produced by spinning , 1978 .

[57]  F. Bosman,et al.  The cytoskeleton and disease , 2004, The Journal of pathology.

[58]  T. Müller,et al.  ATP-independent contractile proteins from plants , 2003, Nature materials.

[59]  Amy Brock,et al.  Geometric determinants of directional cell motility revealed using microcontact printing. , 2003, Langmuir : the ACS journal of surfaces and colloids.

[60]  D. Hansford,et al.  Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding , 2007, Biomedical microdevices.

[61]  C. Liu,et al.  Recent Developments in Polymer MEMS , 2007 .

[62]  Luke P. Lee,et al.  A single cell electroporation chip. , 2005, Lab on a chip.

[63]  A. Yamamoto,et al.  A new technique for direct measurement of the shear force necessary to detach a cell from a material. , 1998, Biomaterials.

[64]  E. Smela Microfabrication of PPy microactuators and other conjugated polymer devices , 1999 .

[65]  L. J. Lee,et al.  Self-folding of three-dimensional hydrogel microstructures. , 2005, The journal of physical chemistry. B.

[66]  Fred J Sigworth,et al.  Microfluidic system for planar patch clamp electrode arrays. , 2006, Nano letters.

[67]  Nicholas Ferrell,et al.  Fabrication of polymeric microparticles for drug delivery by soft lithography. , 2006, Biomaterials.

[68]  Peter W Zandstra,et al.  Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems. , 2002, Biotechnology and bioengineering.

[69]  T. Desai,et al.  Microfabricated drug delivery systems: from particles to pores. , 2003, Advanced drug delivery reviews.

[70]  R. Nagle,et al.  Cell Adhesion and Cytoskeletal Molecules in Metastasis , 2006 .

[71]  M. Madou Fundamentals of microfabrication , 1997 .

[72]  M. Ferrari,et al.  Microfabricated Biocapsules Provide Short-Term Immunoisolation of Insulinoma Xenografts , 1999, Biomedical microdevices.

[73]  Rebecca S. Shawgo,et al.  BioMEMS for drug delivery , 2002 .

[74]  B. Bhushan,et al.  Investigation of nanotribological properties of self-assembled monolayers with alkyl and biphenyl spacer chains (invited). , 2002, Ultramicroscopy.

[75]  C. M. Agrawal,et al.  Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. , 1999, Biomaterials.

[76]  F. Braet,et al.  Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells , 1997, Journal of microscopy.

[77]  K. Burridge,et al.  Rho-stimulated contractility drives the formation of stress fibers and focal adhesions , 1996, The Journal of cell biology.

[78]  George M. Whitesides,et al.  Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching , 1993 .

[79]  K. Zatloukal,et al.  The keratin cytoskeleton in liver diseases , 2004, The Journal of pathology.

[80]  D. Hansford,et al.  Fabrication of Piezoelectric Polyvinylidene Fluoride (PVDF) Microstructures by Soft Lithography for Tissue Engineering and Cell Biology Applications , 2007 .

[81]  Krzysztof Pielichowski,et al.  Polymer Nanocomposites for Aerospace Applications: Properties , 2003 .

[82]  Rashid Bashir,et al.  BioMEMS: state-of-the-art in detection, opportunities and prospects. , 2004, Advanced drug delivery reviews.

[83]  J. Cooper,et al.  Effects of cytochalasin and phalloidin on actin , 1987, The Journal of cell biology.

[84]  Y. Ito,et al.  Surface micropatterning to regulate cell functions. , 1999, Biomaterials.

[85]  George M. Whitesides,et al.  Fabrication of Three Dimensional Microstructures: Microtransfer Molding , 1996 .

[86]  G. Whitesides,et al.  Patterning proteins and cells using soft lithography. , 1999, Biomaterials.

[87]  Marcus Textor,et al.  An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells. , 2005, Biomaterials.

[88]  S. Schwan,et al.  In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates (forisomes). , 2007, Biophysical chemistry.

[89]  Bahaa E. A. Saleh,et al.  Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization , 2004 .

[90]  A. C. Fischer-Cripps,et al.  Critical review of analysis and interpretation of nanoindentation test data , 2006 .

[91]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[92]  Yanchun Han,et al.  Patterning thin polymer films by surface-directed dewetting and pattern transfer , 2003 .

[93]  M. Reed,et al.  Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells. , 2002, Biosensors & bioelectronics.

[94]  Robert Weiss,et al.  Spinodal Dewetting of Thin Polymer Films , 1998 .

[95]  Steve Bull,et al.  Nanoindentation of coatings , 2005 .

[96]  M. Sheetz,et al.  Forces on adhesive contacts affect cell function. , 1998, Current opinion in cell biology.

[97]  Junji Fukuda,et al.  Orderly arrangement of hepatocyte spheroids on a microfabricated chip. , 2005, Tissue engineering.

[98]  Stephen R. Jones,et al.  The high throughput investigation of polyphenolic couplers in biodegradable packaging materials , 2006 .

[99]  David Braun,et al.  Semiconducting polymer LEDs , 2002 .

[100]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[101]  Rong Li,et al.  Cell-based biosensors and its application in biomedicine , 2005 .

[102]  T D Brown,et al.  Techniques for mechanical stimulation of cells in vitro: a review. , 2000, Journal of biomechanics.

[103]  D E Ingber,et al.  Cellular control lies in the balance of forces. , 1998, Current opinion in cell biology.

[104]  E. Fuchs,et al.  The cytoskeleton and disease: genetic disorders of intermediate filaments. , 1996, Annual review of genetics.

[105]  G. Whitesides,et al.  Polymer microstructures formed by moulding in capillaries , 1995, Nature.

[106]  B. Bhushan,et al.  Nanoindentation and picoindentation measurements using a capacitive transducer system in atomic force microscopy , 1996 .

[107]  D. Ingber Tensegrity II. How structural networks influence cellular information processing networks , 2003, Journal of Cell Science.

[108]  M. Pekny,et al.  Astrocyte intermediate filaments in CNS pathologies and regeneration , 2004, The Journal of pathology.

[109]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[110]  George M. Whitesides,et al.  Making Negative Poisson's Ratio Microstructures by Soft Lithography** , 1999 .

[111]  K. Pister,et al.  Surface micromachined polysilicon heart cell force transducer , 2000, Journal of Microelectromechanical Systems.

[112]  Xiaomei Yu,et al.  3-D microarrays biochip for DNA amplification in polydimethylsiloxane (PDMS) elastomer , 2003 .

[113]  Yong Huang,et al.  Microfabricated electroporation chip for single cell membrane permeabilization , 2001 .

[114]  Subra Suresh,et al.  The biomechanics toolbox: experimental approaches for living cells and biomolecules , 2003 .

[115]  Evelyn Meyer,et al.  Patterning Polymers by Micro‐Fluid‐Contact Printing , 2001 .

[116]  R. Hochmuth,et al.  Micropipette aspiration of living cells. , 2000, Journal of biomechanics.

[117]  Ashutosh Sharma,et al.  Dewetting of Thin Films on Periodic Physically and Chemically Patterned Surfaces , 2002 .

[118]  Smadar Cohen,et al.  Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions , 2004, Biotechnology and bioengineering.

[119]  Y. Wang,et al.  Cell locomotion and focal adhesions are regulated by substrate flexibility. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[120]  Buddy D. Ratner,et al.  Biomaterials Science: An Introduction to Materials in Medicine , 1996 .

[121]  J. E. Mark Polymer Data Handbook , 2009 .

[122]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[123]  M. Sheetz,et al.  Cell migration: regulation of force on extracellular-matrix-integrin complexes. , 1998, Trends in cell biology.

[124]  Sylvia Daunert,et al.  Design and Fabrication of CD-Like Microfluidic Platforms for Diagnostics: Polymer-Based Microfabrication , 2001 .

[125]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[126]  Frances S Ligler,et al.  Fabrication of a capillary immunosensor in polymethyl methacrylate. , 2002, Biosensors & bioelectronics.

[127]  Brian P Helmke,et al.  Mechanisms of mechanotransduction. , 2006, Developmental cell.

[128]  Daniel A Fletcher,et al.  Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. , 2006, Biophysical journal.

[129]  Donald E. Ingber,et al.  Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions , 1998, Nature.

[130]  M. Knoblauch,et al.  Biomimetic actuators: where technology and cell biology merge , 2004, Cellular and Molecular Life Sciences CMLS.

[131]  Sharma,et al.  Instability and morphology of thin liquid films on chemically heterogeneous substrates , 2000, Physical review letters.

[132]  John A. Rogers,et al.  Nonphotolithographic fabrication of organic transistors with micron feature sizes , 1998 .

[133]  D. Hansford,et al.  Fabrication of Micro‐ and Nanoscale Polymer Structures by Soft Lithography and Spin Dewetting , 2007 .

[134]  J. Fluitman,et al.  A survey on the reactive ion etching of silicon in microtechnology , 1996 .

[135]  Robert Langer,et al.  Multi-pulse drug delivery from a resorbable polymeric microchip device , 2003, Nature materials.

[136]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[137]  Robert Langer,et al.  Application of Micro- and Nano-Electromechanical Devices to Drug Delivery , 2006, Pharmaceutical Research.

[138]  B. Hill,et al.  Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. , 2001, Molecular pharmacology.

[139]  Christopher S. Chen,et al.  Cells lying on a bed of microneedles: An approach to isolate mechanical force , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[140]  T. Fojo,et al.  Molecular effects of paclitaxel: Myths and reality (a critical review) , 1999, International journal of cancer.

[141]  A. G. Emslie,et al.  Flow of a Viscous Liquid on a Rotating Disk , 1958 .

[142]  H. Chou,et al.  Wiskott–Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells , 2004, The Journal of pathology.

[143]  Holger Becker,et al.  Hot embossing as a method for the fabrication of polymer high aspect ratio structures , 2000 .

[144]  M. Sheetz,et al.  A micromachined device provides a new bend on fibroblast traction forces. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[145]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[146]  Wen H. Ko,et al.  Trends and frontiers of MEMS , 2007 .

[147]  G. Borisy,et al.  THE MECHANISM OF ACTION OF COLCHICINE , 1967, The Journal of cell biology.

[148]  Yong Qing Fu,et al.  TiNi-based thin films in MEMS applications: a review , 2004 .

[149]  A. Ahluwalia,et al.  Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. , 2003, Biomaterials.

[150]  C. M. Hart,et al.  Low-cost all-polymer integrated circuits , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[151]  G. Whitesides,et al.  Components for integrated poly(dimethylsiloxane) microfluidic systems , 2002, Electrophoresis.

[152]  E. Sausville,et al.  Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. , 1994, The Journal of biological chemistry.

[153]  S. Holdcroft Patterning π‐Conjugated Polymers , 2001 .

[154]  S. Suresh,et al.  Cell and molecular mechanics of biological materials , 2003, Nature materials.

[155]  M. Dembo,et al.  Cell movement is guided by the rigidity of the substrate. , 2000, Biophysical journal.

[156]  D. Bodas,et al.  Poly(methyl methacrylate) as masking material for microelectromechanical system (MEMS) fabrication , 2006 .

[157]  M. A. Borrello,et al.  Fibroblast heterogeneity in the healing wound , 1995, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[158]  Bernhard H Weigl,et al.  Microfluidic technologies in clinical diagnostics. , 2002, Clinica chimica acta; international journal of clinical chemistry.

[159]  Dago M. de Leeuw,et al.  I-Line lithography of poly-(3,4-ethylenedioxythiophene) electrodes and application in all-polymer integrated circuits , 2002 .

[160]  George M. Whitesides,et al.  FORMATION OF PATTERNED MICROSTRUCTURES OF CONDUCTING POLYMERS BY SOFT LITHOGRAPHY, AND APPLICATIONS IN MICROELECTRONIC DEVICE FABRICATION , 1999 .

[161]  L. Weiss,et al.  Cell adhesion. , 1978, International dental journal.

[162]  Andreas Manz,et al.  Chip-based microsystems for genomic and proteomic analysis , 2000 .

[163]  Matsuhiko Nishizawa,et al.  Micropatterning of HeLa Cells on Glass Substrates and Evaluation of Respiratory Activity Using Microelectrodes , 2002 .

[164]  Milan Mrksich,et al.  Micropatterned Surfaces for Control of Cell Shape, Position, and Function , 1998, Biotechnology progress.

[165]  Jaroslav Stejskal,et al.  In-situ polymerized polyaniline films , 1999 .

[166]  A. Mayes,et al.  Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications , 2005 .

[167]  J. Engel,et al.  Liquid crystal polymer (LCP) for MEMS: processes and applications , 2003 .

[168]  I. Spector,et al.  Effects of Jasplakinolide on the Kinetics of Actin Polymerization , 2000, The Journal of Biological Chemistry.

[169]  Bharat Bhushan,et al.  Microfabrication and nanomechanical characterization of polymer microelectromechanical system for biological applications , 2005 .

[170]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[171]  S. Chizhik,et al.  Atomic force microscopy probing of cell elasticity. , 2007, Micron.

[172]  J. Stejskal,et al.  In-situ polymerized polyaniline films: 3. Film formation , 2001 .

[173]  A. Horwitz,et al.  Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions , 1995, The Journal of cell biology.

[174]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .