Synthesis, structure and properties of metal nanoclusters.

Metal nanoclusters have physical properties differing significantly from their bulk counterparts. Metallic properties such as delocalization of electrons in bulk metals which imbue them with high electrical and thermal conductivity, light reflectivity and mechanical ductility may be wholly or partially absent in metal nanoclusters, while new properties develop. We review modern synthetic methods used to form metal nanoclusters. The focus of this critical review is solution based chemical synthesis methods which produce fully dispersed clusters. Control of cluster size and surface chemistry using inverse micelles is emphasized. Two classes of metals are discussed, transition metals such as Au and Pt, and base metals such as Co, Fe and Ni. The optical and catalytic properties of the former are discussed and the magnetic properties of the latter are given as examples of unexpected new size-dependent properties of nanoclusters. We show how classical surface science methods of characterization augmented by chemical analysis methods such as liquid chromatography can be used to provide feedback for improvements in synthetic protocols. Characterization of metal clusters by their optical, catalytic, or magnetic behavior also provides insights leading to improvements in synthetic methods. The collective physical properties of closely interacting clusters are reviewed followed by speculation on future technical applications of clusters. (125 references).

[1]  Catherine J. Murphy,et al.  Seeding Growth for Size Control of 5−40 nm Diameter Gold Nanoparticles , 2001 .

[2]  A. Henglein Mechanism of Reactions on Colloidal Microelectrodes and Size Quantization Effects , 1987, Electrochemistry II.

[3]  E. Snoeck,et al.  Synthesis, Characterization, and Magnetic Properties of Cobalt Nanoparticles from an Organometallic Precursor , 1996 .

[4]  M. Pileni,et al.  COBALT NANOSIZED PARTICLES ORGANIZED IN A 2D SUPERLATTICE : SYNTHESIS, CHARACTERIZATION, AND MAGNETIC PROPERTIES , 1999 .

[5]  T. W. Smith,et al.  The structure, magnetic characterization, and oxidation of colloidal iron dispersions , 1979 .

[6]  E. Shevchenko,et al.  Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. , 2003, Journal of the American Chemical Society.

[7]  James E. Martin,et al.  Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography , 2000 .

[8]  M. Haruta Nanoparticles Can Open a New World of Heterogeneous Catalysis , 2003 .

[9]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[10]  Richard A Friesner,et al.  Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping. , 2003, Journal of the American Chemical Society.

[11]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[12]  D. Farrell,et al.  Preparation and Characterization of Monodisperse Fe Nanoparticles , 2003 .

[13]  I. Billas,et al.  Magnetism of Fe, Co and Ni clusters in molecular beams , 1997 .

[14]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[15]  Mostafa A. El-Sayed,et al.  Alloy Formation of Gold−Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition , 1999 .

[16]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[17]  Christopher J. Kiely,et al.  Ordered Colloidal Nanoalloys , 2000 .

[18]  M. Casanove,et al.  Synthesis and Isolation of Cuboctahedral and Icosahedral Platinum Nanoparticles. Ligand-Dependent Structures , 1996 .

[19]  Shouheng Sun,et al.  Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) , 1999 .

[20]  James E. Martin,et al.  Superlattices of Platinum and Palladium Nanoparticles , 2000 .

[21]  G. Schmid Tetraedrische Carbonylcobalt‐Cluster , 1978 .

[22]  P. Provencio,et al.  Heterogeneous growth of metal clusters from solutions of seed nanoparticles. , 2004, Journal of the American Chemical Society.

[23]  H. Topsøe,et al.  Developments in operando studies and in situ characterization of heterogeneous catalysts , 2003 .

[24]  U. Kreibig,et al.  OPTICAL ABSORPTION OF SMALL METALLIC PARTICLES , 1985 .

[25]  C. Klein,et al.  Synthesis of monodispersed bimetallic palladium-copper nanoscale colloids , 1993 .

[26]  C. Giordano,et al.  Physicochemical investigation of surfactant-coated gold nanoparticles synthesized in the confined space of dry reversed micelles , 2006 .

[27]  W. Ekardt,et al.  Work function of small metal particles: Self-consistent spherical jellium-background model , 1984 .

[28]  J. K. Thomas,et al.  Cadmium sulfide of small dimensions produced in inverted micelles , 1986 .

[29]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[30]  G. Samara,et al.  Synthesis and optical properties of colloidal germanium nanocrystals , 2001 .

[31]  S. Mørup,et al.  In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts: Evidence for and nature of a CoMoS phase , 1981 .

[32]  Per Stenius,et al.  The preparation of monodisperse colloidal metal particles from microemulsions , 1982 .

[33]  M. Pileni,et al.  Synthesis of Highly Monodisperse Silver Nanoparticles from AOT Reverse Micelles: A Way to 2D and 3D Self-Organization , 1997 .

[34]  R. Finke,et al.  Nanocluster Size-Control and “Magic Number” Investigations. Experimental Tests of the “Living-Metal Polymer” Concept and of Mechanism-Based Size-Control Predictions Leading to the Syntheses of Iridium(0) Nanoclusters Centering about Four Sequential Magic Numbers† , 1997 .

[35]  A. Henglein,et al.  Photochemistry of Colloidal Semiconductors. 30. HPLC Investigation of Small CdS Particles , 1989 .

[36]  R. Finke,et al.  A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis , 1999 .

[37]  Christopher B. Murray,et al.  Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices , 2001 .

[38]  Zhong Lin Wang,et al.  Highly Oriented Molecular Ag Nanocrystal Arrays , 1996 .

[39]  Louis E. Brus,et al.  Electronic Structure and Luminescence of 1.1- and 1.4-nm Silicon Nanocrystals: Oxide Shell versus Hydrogen Passivation , 2003 .

[40]  G. Redmond,et al.  Artificial atom solids based on metal nanocrystals : Formation and electrical properties , 2005 .

[41]  P. Hess,et al.  Polymers for stabilization of colloidal cobalt particles , 1966 .

[42]  Etienne Snoeck,et al.  Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly(vinylpyrrolidone) chain length on their magnetic properties , 1999 .

[43]  M. Pileni,et al.  Hdyrated electron in reverse micelles , 1982 .

[44]  Paul Mulvaney,et al.  Preparation of ordered colloid monolayers by electrophoretic deposition , 1993 .

[45]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[46]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[47]  Christophe Petit,et al.  Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles , 1998 .

[48]  J. S. Bradley,et al.  Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension , 1991 .

[49]  T. Tanaka,et al.  Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition , 1999 .

[50]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[51]  H. Bönnemann,et al.  Nanoscopic Metal Particles − Synthetic Methods and Potential Applications , 2001 .

[52]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[53]  A. Henglein,et al.  Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles , 1989 .

[54]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[55]  T. D. Harris,et al.  Surface derivatization and isolation of semiconductor cluster molecules , 1988 .

[56]  Paul Mulvaney,et al.  Formation of ordered two-dimensional gold colloid lattices by electrophoretic deposition , 1993 .

[57]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[58]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[59]  C. Sorensen,et al.  Control of Cobalt Nanoparticle Size by the Germ-growth Method in Inverse Micelle System: Size-dependent Magnetic Properties , 1999 .

[60]  Horst Weller,et al.  Photo-Chemistry of Colloidal Metal Sulfides 8. Photo-Physics of Extremely Small CdS Particles: Q-State CdS and Magic Agglomeration Numbers , 1984 .

[61]  Louis E. Brus,et al.  A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction , 1993 .

[62]  E. Venturini,et al.  Magnetic response of dilute cobalt nanoparticles in an organic matrix: The effects of aging and interface chemistry , 2003 .

[63]  G M Whitesides,et al.  Patterned Condensation Figures as Optical Diffraction Gratings , 1994, Science.

[64]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[65]  M. Brust,et al.  Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters , 1998, Nature.

[66]  B. Chaudret,et al.  Synthesis of iron nanoparticles: Size effects, shape control and organisation , 2005 .

[67]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[68]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[69]  L. Brus Chemical approaches to semiconductor nanocrystals , 1998 .

[70]  Luis M Liz-Marzán,et al.  Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[71]  Dmitri V Talapin,et al.  Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. , 2006, Journal of the American Chemical Society.

[72]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[73]  P. Provencio,et al.  Use of Surfactant Micelles to Control the Structural Phase of Nanosize Iron Clusters , 1999 .

[74]  Deborah Silver,et al.  Visiometrics, Juxtaposition and Modeling , 1993 .

[75]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[76]  N. Pradhan,et al.  Seed Mediated Formation of Bimetallic Nanoparticles by UV Irradiation: A Photochemical Approach for the Preparation of “Core−Shell” Type Structures , 2001 .

[77]  M. Respaud Magnetization process of noninteracting ferromagnetic cobalt nanoparticles in the superparamagnetic regime: Deviation from Langevin law , 1999 .

[78]  D. Fitzmaurice,et al.  Nanostructures from nanoparticles , 2003 .

[79]  P. Kamat,et al.  Nanoparticles in advanced oxidation processes , 2002 .

[80]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[81]  M. Casanove,et al.  Ligand-stabilized ruthenium nanoparticles: synthesis, organization, and dynamics. , 2001, Journal of the American Chemical Society.

[82]  N. Toshima,et al.  Preparation of Colloidal Rhodium in Poly(vinyl Alcohol) by Reduction with Methanol , 1978 .

[83]  Han,et al.  Dodecanethiol-Derivatized Au/Ag Bimetallic Nanoparticles: TEM, UV/VIS, XPS, and FTIR Analysis. , 1998, Journal of colloid and interface science.

[84]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[85]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[86]  R. L. Williamson,et al.  Optical properties of gold colloids formed in inverse micelles , 1993 .

[87]  Chen,et al.  Enhanced magnetization of nanoscale colloidal cobalt particles. , 1995, Physical review. B, Condensed matter.

[88]  H. Dislich,et al.  Anti-reflecting light-scattering coatings via the sol-gel-procedure , 1986 .

[89]  T. Teranishi,et al.  Size Control of Palladium Nanoparticles and Their Crystal Structures , 1998 .

[90]  G. Samara,et al.  Optical and Electronic Properties of Si Nanoclusters Synthesized in Inverse Micelles , 1999 .

[91]  James E. Martin,et al.  Optical properties of gold and silver nanoclusters investigated by liquid chromatography , 2001 .

[92]  George M. Whitesides,et al.  Microcontact printing of alkanethiols on copper and its application in microfabrication , 1996 .

[93]  Bruno Chaudret,et al.  The solid-state synthesis of metal nanoparticles from organometallic precursors. , 2005, Journal of colloid and interface science.

[94]  N. Kotov,et al.  Utilization of surfactant-stabilized colloidal silver nanocrystallites in the construction of mono- and multiparticulate Langmuir-Blodgett films , 1994 .

[95]  James R. Heath,et al.  PRESSURE/TEMPERATURE PHASE DIAGRAMS AND SUPERLATTICES OF ORGANICALLY FUNCTIONALIZED METAL NANOCRYSTAL MONOLAYERS: THE INFLUENCE OF PARTICLE SIZE, SIZE DISTRIBUTION, AND SURFACE PASSIVANT , 1997 .

[96]  C. Sorensen,et al.  Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. , 2002, Journal of the American Chemical Society.

[97]  M. Casanove,et al.  Bimetallic CoRh and CoRu nanoparticles: size-induced enhanced magnetisation , 2004 .

[98]  Bruno Chaudret,et al.  Organometallic approach to nanoparticles synthesis and self-organization , 2005 .

[99]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[100]  P. Provencio,et al.  Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography , 2003 .

[101]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[102]  A. Henglein,et al.  Electrochemistry of multilayer colloids : preparation and absorption spectrum of gold-coated silver particles , 1993 .

[103]  F. Vnuk,et al.  The Semi-Conductor ⇌ Metal Transition in Tin , 1983 .

[104]  P. Stenius,et al.  Monodisperse colloidal metal particles from nonaqueous solutions: Catalytic behavior in hydrogenation of but-1-ene of platinum, palladium, and rhodium particles supported on pumice , 1987 .