On electron transport through Geobacter biofilms.

Geobacter spp. can form a biofilm that is more than 20 μm thick on an anode surface by utilizing the anode as a terminal respiratory electron acceptor. Just how microbes transport electrons through a thick biofilm and across the biofilm/anode interface, and what determines the upper limit to biofilm thickness and catalytic activity (i.e., current, the rate at which electrons are transferred to the anode), are fundamental questions attracting substantial attention. A significant body of experimental evidence suggests that electrons are transferred from individual cells through a network of cytochromes associated with cell outer membranes, within extracellular polymeric substances, and along pili. Here, we describe what is known about this extracellular electron transfer process, referred to as electron superexchange, and its proposed role in biofilm anode respiration. Superexchange is able to account for many different types of experimental results, as well as for the upper limit to biofilm thickness and catalytic activity that Geobacter biofilm anodes can achieve.

[1]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[2]  Byoung-Chan Kim,et al.  Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant. , 2008, Bioelectrochemistry.

[3]  Derek R. Lovley,et al.  Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer , 2009 .

[4]  M. Schiffer,et al.  Redox characterization of Geobacter sulfurreducens cytochrome c7: physiological relevance of the conserved residue F15 probed by site-specific mutagenesis. , 2004, Biochemistry.

[5]  David N Beratan,et al.  Physical constraints on charge transport through bacterial nanowires. , 2012, Faraday discussions.

[6]  Shi Liang,et al.  導電性ナノワイヤーをShewanella oneidensis菌MR‐1菌株その他の微生物が生成する , 2006 .

[7]  D. Lovley,et al.  Purification and Characterization of OmcZ, an Outer-Surface, Octaheme c-Type Cytochrome Essential for Optimal Current Production by Geobacter sulfurreducens , 2010, Applied and Environmental Microbiology.

[8]  Korneel Rabaey,et al.  Metabolic and practical considerations on microbial electrosynthesis. , 2011, Current opinion in biotechnology.

[9]  D. Richardson,et al.  Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors , 2007, JBIC Journal of Biological Inorganic Chemistry.

[10]  B. Rittmann,et al.  Evaluating the impacts of migration in the biofilm anode using the model PCBIOFILM , 2010 .

[11]  Byoung-Chan Kim,et al.  Tunable metallic-like conductivity in microbial nanowire networks. , 2011, Nature nanotechnology.

[12]  T. Mehta,et al.  Extracellular electron transfer via microbial nanowires , 2005, Nature.

[13]  Bruce E Rittmann,et al.  Analysis of a microbial electrochemical cell using the proton condition in biofilm (PCBIOFILM) model. , 2011, Bioresource technology.

[14]  Daniel R. Bond,et al.  Identification of an Extracellular Polysaccharide Network Essential for Cytochrome Anchoring and Biofilm Formation in Geobacter sulfurreducens , 2010, Journal of bacteriology.

[15]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[16]  Ching Leang,et al.  Specific localization of the c-type cytochrome OmcZ at the anode surface in current-producing biofilms of Geobacter sulfurreducens. , 2011, Environmental microbiology reports.

[17]  T. D. Yuzvinsky,et al.  Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1 , 2010, Proceedings of the National Academy of Sciences.

[18]  Jian Sun,et al.  Voltammetry and Growth Physiology of Geobacter sulfurreducens Biofilms as a Function of Growth Stage and Imposed Electrode Potential , 2010 .

[19]  C. Leang,et al.  Two Putative c-Type Multiheme Cytochromes Required for the Expression of OmcB, an Outer Membrane Protein Essential for Optimal Fe(III) Reduction in Geobacter sulfurreducens , 2006, Journal of bacteriology.

[20]  Uwe Schröder,et al.  Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants. , 2011, Bioelectrochemistry.

[21]  Anthony Guiseppi-Elie,et al.  On the electrical conductivity of microbial nanowires and biofilms , 2011 .

[22]  T. Arakawa,et al.  Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. , 2011, Biochimica et biophysica acta.

[23]  Ashley E. Franks,et al.  Microbial Fuel Cells, A Current Review , 2010 .

[24]  Uwe Schröder,et al.  Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. , 2011, Bioresource technology.

[25]  Michele Zanoni,et al.  Visible spectroelectrochemical characterization of Geobacter sulfurreducens biofilms on optically transparent indium tin oxide electrode , 2011 .

[26]  P. Girguis,et al.  Harnessing energy from marine productivity using bioelectrochemical systems. , 2010, Current opinion in biotechnology.

[27]  Richard D. Smith,et al.  Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor. , 2008, Biochimica et biophysica acta.

[28]  Shweta Srikanth,et al.  Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes , 2008, Biotechnology and bioengineering.

[29]  Uwe Schröder,et al.  On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells , 2008 .

[30]  C. Leang,et al.  OmcB, a c-Type Polyheme Cytochrome, Involved in Fe(III) Reduction in Geobacter sulfurreducens , 2003, Journal of bacteriology.

[31]  D. Lovley,et al.  Investigation of direct vs. indirect involvement of the c-type cytochrome MacA in Fe(III) reduction by Geobacter sulfurreducens. , 2008, FEMS microbiology letters.

[32]  Nigel A. Surridge,et al.  Charge transport in electroactive polymers consisting of fixed molecular Redox sites , 1990 .

[33]  N. Mano,et al.  Modulating the redox properties of an osmium-containing metallopolymer through the supporting electrolyte and cross-linking. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[34]  Derek R. Lovley,et al.  Alignment of the c-Type Cytochrome OmcS along Pili of Geobacter sulfurreducens , 2010, Applied and Environmental Microbiology.

[35]  B. Palsson,et al.  Characterization of Metabolism in the Fe(III)-Reducing Organism Geobacter sulfurreducens by Constraint-Based Modeling , 2006, Applied and Environmental Microbiology.

[36]  Uwe Schröder,et al.  In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. , 2011, Angewandte Chemie.

[37]  Christian L. Barrett,et al.  Production of pilus-like filaments in Geobacter sulfurreducens in the absence of the type IV pilin protein PilA. , 2010, FEMS microbiology letters.

[38]  Byoung-Chan Kim,et al.  Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells , 2009, PloS one.

[39]  D. Lovley,et al.  Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. , 2007, FEMS microbiology letters.

[40]  Derek R Lovley,et al.  Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. , 2011, Bioelectrochemistry.

[41]  Keith Scott,et al.  Model based evaluation of the effect of pH and electrode geometry on microbial fuel cell performance. , 2010, Bioelectrochemistry.

[42]  Derek R. Lovley,et al.  Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination , 2011 .

[43]  D. Leech,et al.  Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. , 2010, Chemical Communications.

[44]  A. Estéve-Núñez,et al.  ATR-SEIRAs characterization of surface redox processes in G. sulfurreducens. , 2010, Bioelectrochemistry.

[45]  Alice Dohnalkova,et al.  Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Mehta,et al.  Outer Membrane c-Type Cytochromes Required for Fe(III) and Mn(IV) Oxide Reduction in Geobacter sulfurreducens , 2005, Applied and Environmental Microbiology.

[47]  Ching Leang,et al.  Direct Exchange of Electrons Within Aggregates of an Evolved Syntrophic Coculture of Anaerobic Bacteria , 2010, Science.

[48]  R. V. van Spanning,et al.  The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. , 2008, Biochimica et biophysica acta.

[49]  R. Hozalski,et al.  Microbial Biofilm Voltammetry: Direct Electrochemical Characterization of Catalytic Electrode-Attached Biofilms , 2008, Applied and Environmental Microbiology.

[50]  A. Estéve-Núñez,et al.  Opportunities behind the unusual ability of geobacter sulfurreducens for exocellular respiration and electricity production , 2011 .

[51]  L. T. Angenent,et al.  Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells , 2010 .

[52]  Abraham Esteve-Núñez,et al.  Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. , 2005, Environmental microbiology.

[53]  S. Kelly,et al.  Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism , 2011, Proceedings of the National Academy of Sciences.

[54]  Byung Hong Kim,et al.  Electroactive biofilms: Current status and future research needs , 2011 .

[55]  Paul C Mills,et al.  Characterization of an electron conduit between bacteria and the extracellular environment , 2009, Proceedings of the National Academy of Sciences.

[56]  Bruce E Rittmann,et al.  Proton transport inside the biofilm limits electrical current generation by anode‐respiring bacteria , 2008, Biotechnology and bioengineering.

[57]  Richard D. Smith,et al.  The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. , 2006, Biochimica et biophysica acta.

[58]  Bruce E. Rittmann,et al.  A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. , 2010, FEMS microbiology reviews.

[59]  Derek R. Lovley,et al.  Application of cyclic voltammetry to investigate enhanced catalytic current generation by biofilm-modified anodes of Geobacter sulfurreducens strain DL1 vs. variant strain KN400 , 2011 .

[60]  Rhonda R. Franklin,et al.  Linking spectral and electrochemical analysis to monitor c-type cytochrome redox status in living Geobacter sulfurreducens biofilms. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  A. Heller,et al.  L-alpha-glycerophosphate and L-lactate electrodes based on the electrochemical "wiring" of oxidases. , 1992, Analytical chemistry.

[62]  Derek R. Lovley,et al.  Novel strategy for three-dimensional real-time imaging of microbial fuel cell communities: monitoring the inhibitory effects of proton accumulation within the anode biofilm , 2009 .

[63]  Derek R Lovley,et al.  Microtoming coupled to microarray analysis to evaluate the spatial metabolic status of Geobacter sulfurreducens biofilms , 2010, The ISME Journal.

[64]  John M. Zachara,et al.  Structure of a bacterial cell surface decaheme electron conduit , 2011, Proceedings of the National Academy of Sciences.

[65]  Prathap Parameswaran,et al.  Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. , 2008, Environmental science & technology.

[66]  Falk Harnisch,et al.  Spektroelektrochemische In‐situ‐Untersuchung von elektrokatalytischen mikrobiellen Biofilmen mit oberflächenverstärkter Resonanz‐Raman‐Spektroskopie , 2011 .

[67]  J A Eisen,et al.  Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments , 2003, Science.

[68]  D. Lovley,et al.  Possible Nonconductive Role of Geobacter sulfurreducens Pilus Nanowires in Biofilm Formation , 2006, Journal of bacteriology.

[69]  K. Nealson,et al.  The molecular density of states in bacterial nanowires. , 2008, Biophysical journal.