Ammonothermal Synthesis, X‐Ray and Time‐of‐Flight Neutron Crystal‐Structure Determination, and Vibrational Properties of Barium Guanidinate, Ba(CN3H4)2
暂无分享,去创建一个
R. Stoffel | R. Dronskowski | T. Kamiyama | S. Torii | U. Englert | P. Miao | S. Benz | G. Ogutu | R. Missong
[1] R. Dronskowski,et al. Itinerant nitrides and salt-like guanidinates – The diversity of solid-state nitrogen chemistry , 2017, Progress in Solid State Chemistry.
[2] Volker L. Deringer,et al. Plane-Wave Density Functional Theory Meets Molecular Crystals: Thermal Ellipsoids and Intermolecular Interactions. , 2017, Accounts of chemical research.
[3] R. Dronskowski,et al. Synthesis, Crystal Structure, Polymorphism, and Magnetism of Eu(CN3H4)2 and First Evidence of EuC(NH)3 , 2017 .
[4] R. Dronskowski,et al. Ammonothermal Synthesis, Crystal Structure, and Properties of the Ytterbium(II) and Ytterbium(III) Amides and the First Two Rare-Earth-Metal Guanidinates, YbC(NH)3 and Yb(CN3H4)3. , 2016, Inorganic chemistry.
[5] Volker L. Deringer,et al. Neutron powder diffraction and theory-aided structure refinement of rubidium and cesium ureate , 2016 .
[6] Janine George,et al. Synthese, Struktur und Eigenschaften von SrC(NH)3, einem stickstoffbasierten Carbonatanalogon mit Trinacriamotiv , 2015 .
[7] R. Dronskowski,et al. Synthesis, structure, and properties of SrC(NH)3 , a nitrogen-based carbonate analogue with the trinacria motif. , 2015, Angewandte Chemie.
[8] I. Tanaka,et al. First principles phonon calculations in materials science , 2015, 1506.08498.
[9] Volker L. Deringer,et al. Completing a family: LiCN3H4, the lightest alkali metal guanidinate. , 2013, Dalton transactions.
[10] Brian H. Toby,et al. GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .
[11] R. Dronskowski,et al. Single-Crystal Neutron Diffraction Study on Guanidine, CN3H5 , 2013 .
[12] R. Dronskowski,et al. Solvothermal synthesis, crystal growth, and structure determination of sodium and potassium guanidinate. , 2012, Inorganic chemistry.
[13] Stefan Grimme,et al. Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..
[14] R. Dronskowski,et al. RbCN3H4: the first structurally characterized salt of a new class of guanidinate compounds. , 2011, Inorganic chemistry.
[15] R. Dronskowski,et al. Ab‐initio‐Thermochemie fester Stoffe , 2010 .
[16] R. Stoffel,et al. Ab initio thermochemistry of solid-state materials. , 2010, Angewandte Chemie.
[17] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[18] R. Dronskowski,et al. Solid-state structure of free base guanidine achieved at last. , 2009, Chemistry.
[19] M. Yonemura,et al. Improvement of Instrument Devices for Super High Resolution Powder Diffractometer at J-PARC , 2008 .
[20] V. M. Goldschmidt,et al. Raumchemie der festen Stoffe , 1934, Naturwissenschaften.
[21] A. Fujii,et al. INFRARED SPECTROSCOPY OF INTRAMOLECULAR HYDROGEN-BONDED OH STRETCHING VIBRATIONS IN JET-COOLED METHYL SALICYLATE AND ITS CLUSTERS , 1998 .
[22] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[23] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[24] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[25] H. Nowotny,et al. Strukturuntersuchungen an Disiliziden , 1952 .
[26] Adolph Strecker,et al. Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin , 1861 .