Ammonothermal Synthesis, X‐Ray and Time‐of‐Flight Neutron Crystal‐Structure Determination, and Vibrational Properties of Barium Guanidinate, Ba(CN3H4)2

Abstract We report the crystal structure of Ba(CN3H4)2 as synthesized from liquid ammonia. Structure solution based on X‐ray diffraction data suffers from a severe pseudo‐tetragonal problem due to extreme scattering contrast, so the true monoclinic symmetry is detectable only from neutron powder diffraction patterns, and structure solution and refinement was greatly aided by density‐functional theory. The symmetry lowering is due to slight deviations of the guanidinate anion from the mirror plane in space group P 4‾ b2, a necessity of hydrogen bonding. At 300 K, barium guanidinate crystallizes in P21/c with a=6.26439(2) Å, b=16.58527(5) Å, c=6.25960(2) Å, and a monoclinic angle of β=90.000(1)°. To improve the data‐to‐parameter ratio, anisotropic displacement parameters from first‐principles theory were incorporated in the neutron refinement. Given the correct structural model, the positional parameters of the heavy atoms were also refinable from X‐ray diffraction of a twinned crystal. The two independent guanidinate anions adopt the all‐trans‐ and the anti‐shape. The Ba cation is coordinated by eight imino nitrogens in a square antiprism with Ba−N contacts between 2.81 and 3.04 Å. The IR and Raman spectra of barium guanidinate were compared with DFT‐calculated phonon spectra to identify the vibrational modes.

[1]  R. Dronskowski,et al.  Itinerant nitrides and salt-like guanidinates – The diversity of solid-state nitrogen chemistry , 2017, Progress in Solid State Chemistry.

[2]  Volker L. Deringer,et al.  Plane-Wave Density Functional Theory Meets Molecular Crystals: Thermal Ellipsoids and Intermolecular Interactions. , 2017, Accounts of chemical research.

[3]  R. Dronskowski,et al.  Synthesis, Crystal Structure, Polymorphism, and Magnetism of Eu(CN3H4)2 and First Evidence of EuC(NH)3 , 2017 .

[4]  R. Dronskowski,et al.  Ammonothermal Synthesis, Crystal Structure, and Properties of the Ytterbium(II) and Ytterbium(III) Amides and the First Two Rare-Earth-Metal Guanidinates, YbC(NH)3 and Yb(CN3H4)3. , 2016, Inorganic chemistry.

[5]  Volker L. Deringer,et al.  Neutron powder diffraction and theory-aided structure refinement of rubidium and cesium ureate , 2016 .

[6]  Janine George,et al.  Synthese, Struktur und Eigenschaften von SrC(NH)3, einem stickstoffbasierten Carbonatanalogon mit Trinacriamotiv , 2015 .

[7]  R. Dronskowski,et al.  Synthesis, structure, and properties of SrC(NH)3 , a nitrogen-based carbonate analogue with the trinacria motif. , 2015, Angewandte Chemie.

[8]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[9]  Volker L. Deringer,et al.  Completing a family: LiCN3H4, the lightest alkali metal guanidinate. , 2013, Dalton transactions.

[10]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[11]  R. Dronskowski,et al.  Single-Crystal Neutron Diffraction Study on Guanidine, CN3H5 , 2013 .

[12]  R. Dronskowski,et al.  Solvothermal synthesis, crystal growth, and structure determination of sodium and potassium guanidinate. , 2012, Inorganic chemistry.

[13]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[14]  R. Dronskowski,et al.  RbCN3H4: the first structurally characterized salt of a new class of guanidinate compounds. , 2011, Inorganic chemistry.

[15]  R. Dronskowski,et al.  Ab‐initio‐Thermochemie fester Stoffe , 2010 .

[16]  R. Stoffel,et al.  Ab initio thermochemistry of solid-state materials. , 2010, Angewandte Chemie.

[17]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[18]  R. Dronskowski,et al.  Solid-state structure of free base guanidine achieved at last. , 2009, Chemistry.

[19]  M. Yonemura,et al.  Improvement of Instrument Devices for Super High Resolution Powder Diffractometer at J-PARC , 2008 .

[20]  V. M. Goldschmidt,et al.  Raumchemie der festen Stoffe , 1934, Naturwissenschaften.

[21]  A. Fujii,et al.  INFRARED SPECTROSCOPY OF INTRAMOLECULAR HYDROGEN-BONDED OH STRETCHING VIBRATIONS IN JET-COOLED METHYL SALICYLATE AND ITS CLUSTERS , 1998 .

[22]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[23]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[24]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[25]  H. Nowotny,et al.  Strukturuntersuchungen an Disiliziden , 1952 .

[26]  Adolph Strecker,et al.  Untersuchungen über die chemischen Beziehungen zwischen Guanin, Xanthin, Theobromin, Caffeïn und Kreatinin , 1861 .