Crystal structure of activated HutP; an RNA binding protein that regulates transcription of the hut operon in Bacillus subtilis.

[1]  Nikos Kyrpides,et al.  Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis , 2003, Nature.

[2]  S. Salzberg,et al.  The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria , 2003, Nature.

[3]  S. Aymerich,et al.  Solution structure of the LicT–RNA antitermination complex: CAT clamping RAT , 2002, The EMBO journal.

[4]  D. le Coq,et al.  Crystal structure of an activated form of the PTS regulation domain from the LicT transcriptional antiterminator , 2001, The EMBO journal.

[5]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[6]  K. Taira,et al.  cis‐Acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine‐dependent binding of HutP to the transcript containing the regulatory sequences , 2000, Molecular microbiology.

[7]  R. B. Greaves,et al.  Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA , 1999, Nature.

[8]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[9]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[10]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[11]  Jack Greenblatt,et al.  NMR Structure of the Bacteriophage λ N Peptide/boxB RNA Complex: Recognition of a GNRA Fold by an Arginine-Rich Motif , 1998, Cell.

[12]  J. L. Smith,et al.  Adaptation of an enzyme to regulatory function: structure of Bacillus subtilis PyrR, a pyr RNA-binding attenuation protein and uracil phosphoribosyltransferase. , 1998, Structure.

[13]  S. Aymerich,et al.  From genetic to structural characterization of a new class of RNA‐binding domain within the SacY/BglG family of antiterminator proteins , 1997, The EMBO journal.

[14]  S. Aymerich,et al.  Crystal structure of a new RNA‐binding domain from the antiterminator protein SacY of Bacillus subtilis , 1997, The EMBO journal.

[15]  C. Alpert,et al.  The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators , 1997, Journal of bacteriology.

[16]  Y. Lu,et al.  Function of RNA secondary structures in transcriptional attenuation of the Bacillus subtilis pyr operon. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Pearl,et al.  Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon. , 1996, The EMBO journal.

[18]  C Sander,et al.  Mapping the Protein Universe , 1996, Science.

[19]  M. Arnaud,et al.  In Vitro Reconstitution of Transcriptional Antitermination by the SacT and SacY Proteins of Bacillus subtilis* , 1996, The Journal of Biological Chemistry.

[20]  T. Gibson,et al.  Three-Dimensional Structure and Stability of the KH Domain: Molecular Insights into the Fragile X Syndrome , 1996, Cell.

[21]  E. Glatz,et al.  A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability , 1996, Molecular microbiology.

[22]  A. Murzin,et al.  NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N‐terminal domain of ribosomal protein S5. , 1995, The EMBO journal.

[23]  T. Gibson,et al.  Structure of the dsRNA binding domain of E. coli RNase III. , 1995, The EMBO journal.

[24]  Min Yang,et al.  The structure of trp RNA-binding attenuation protein , 1995, Nature.

[25]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[26]  Y. Fujita,et al.  Cloning and sequencing of a 29 kb region of the Bacillus subtilis genome containing the hut and wapA loci. , 1995, Microbiology.

[27]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[28]  L. Wray,et al.  Analysis of Bacillus subtilis hut operon expression indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport , 1994, Journal of bacteriology.

[29]  A. Murzin OB(oligonucleotide/oligosaccharide binding)‐fold: common structural and functional solution for non‐homologous sequences. , 1993, The EMBO journal.

[30]  S. Aymerich,et al.  Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Shoun,et al.  Analysis of the transcriptional activity of the hut promoter in Bacillus subtilis and identification of a cis‐acting regulatory region associated with catabolite repression downstream from the site of transcription , 1992, Molecular microbiology.

[32]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[33]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[34]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[35]  P. Evans,et al.  Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A , 1990, Nature.

[36]  Andrew Wright,et al.  Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein , 1990, Cell.

[37]  A. McPherson,et al.  Current approaches to macromolecular crystallization. , 1990, European journal of biochemistry.

[38]  K. Furukawa,et al.  Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtilis hut operon and positive regulation of the operon , 1988, Journal of bacteriology.

[39]  B. Magasanik,et al.  Genetic basis of histidine degradation in Bacillus subtilis. , 1970, The Journal of biological chemistry.

[40]  L. Chasin,et al.  Induction and repression of the histidine-degrading enzymes of Bacillus subtilis. , 1968, The Journal of biological chemistry.

[41]  T J Oldfield,et al.  A number of real-space torsion-angle refinement techniques for proteins, nucleic acids, ligands and solvent. , 2001, Acta crystallographica. Section D, Biological crystallography.

[42]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[43]  V. Stewart,et al.  Nitrate assimilation by bacteria. , 1998, Advances in microbial physiology.

[44]  C. Yanofsky,et al.  Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.