Comparisons of the Nucleotide Substitution Process Among Repetitive Segments of the α- and β-Spectrin Genes

[1]  S. Muse,et al.  Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. , 1997, Genetics.

[2]  D. Branton,et al.  Spectrin: on the path from structure to function. , 1996, Current opinion in cell biology.

[3]  M. Nei,et al.  MEGA: Molecular Evolutionary Genetics Analysis, Version 1.02. , 1995 .

[4]  D. Branton,et al.  Interchain binding at the tail end of the Drosophila spectrin molecule. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Muse,et al.  A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. , 1994, Molecular biology and evolution.

[6]  T. Whittam,et al.  Recombinational basis of serovar diversity in Salmonella enterica. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Branton,et al.  Crystal structure of the repetitive segments of spectrin. , 1993, Science.

[8]  C. Birkenmeier,et al.  Complete nucleotide sequence of the murine erythroid beta-spectrin cDNA and tissue-specific expression in normal and jaundiced mice. , 1993, Blood.

[9]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[10]  Yupo Ma,et al.  The complete amino acid sequence for brain β spectrin (β fodrin): relationship to globin sequences , 1993 .

[11]  M. Watanabe,et al.  Characterization of human brain cDNA encoding the general isoform of beta-spectrin. , 1992, The Journal of biological chemistry.

[12]  D. Speicher,et al.  Properties of human red cell spectrin heterodimer (side-to-side) assembly and identification of an essential nucleation site. , 1992, The Journal of biological chemistry.

[13]  D. Branton,et al.  The complete sequence of Drosophila beta-spectrin reveals supra-motifs comprising eight 106-residue segments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Critchley,et al.  Analysis of the actin-binding domain of alpha-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain , 1992, The Journal of cell biology.

[15]  R. Dubreuil Structure and evolution of the actin crosslinking proteins , 1991, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  J. Hartwig,et al.  Actin-binding proteins. , 1991, Current opinion in cell biology.

[17]  M. Nei,et al.  Positive Darwinian selection promotes charge profile diversity in the antigen-binding cleft of class I major-histocompatibility-complex molecules. , 1990, Molecular biology and evolution.

[18]  D. Speicher,et al.  The complete cDNA and polypeptide sequences of human erythroid alpha-spectrin. , 1990, The Journal of biological chemistry.

[19]  R. Moon,et al.  Generation of diversity in nonerythroid spectrins. Multiple polypeptides are predicted by sequence analysis of cDNAs encompassing the coding region of human nonerythroid alpha-spectrin. , 1990, The Journal of biological chemistry.

[20]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[21]  D. Branton,et al.  The complete sequence of Drosophila alpha-spectrin: conservation of structural domains between alpha-spectrins and alpha-actinin , 1989, The Journal of cell biology.

[22]  S. Sawyer Statistical tests for detecting gene conversion. , 1989, Molecular biology and evolution.

[23]  D. Barton,et al.  Comparison of nonerythroid alpha-spectrin genes reveals strict homology among diverse species , 1988, Molecular and cellular biology.

[24]  R. Moon,et al.  Structure and evolution of a non-erythroid spectrin, human alpha-fodrin. , 1987, Biochemical Society transactions.

[25]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[26]  J. Stephens,et al.  Statistical methods of DNA sequence analysis: detection of intragenic recombination or gene conversion. , 1985, Molecular biology and evolution.

[27]  Vincent T. Marchesi,et al.  Erythrocyte spectrin is comprised of many homologous triple helical segments , 1984, Nature.

[28]  T. Gojobori,et al.  Rapid evolution of goat and sheep globin genes following gene duplication. , 1983, Molecular biology and evolution.

[29]  Y. Kan,et al.  Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[30]  H. Akaike A new look at the statistical model identification , 1974 .

[31]  A Gajdos,et al.  [Evolution of protein molecules. I. Protein synthesis]. , 1972, La Nouvelle presse medicale.

[32]  D. Gilligan,et al.  The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. , 1993, Annual review of cell biology.

[33]  D. Dhermy The spectrin super-family. , 1991, Biology of the cell.

[34]  M. Mooseker,et al.  Contributions of the beta-subunit to spectrin structure and function. , 1989, Cell motility and the cytoskeleton.

[35]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[36]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .