Uniqueness of Nonnegative Tensor Approximations

We show that for a nonnegative tensor, a best nonnegative rank-r approximation is almost always unique, its best rank-one approximation may always be chosen to be a best nonnegative rank-one approximation, and the set of nonnegative tensors with nonunique best rank-one approximations forms an algebraic hypersurface. We show that the last part holds true more generally for real tensors and, thereby, determine a polynomial equation, so that a real or nonnegative tensor that does not satisfy this equation is guaranteed to have a unique best rank-one approximation. We also establish an analogue for real or nonnegative symmetric tensors. In addition, we prove a singular vector variant of the Perron-Frobenius theorem for positive tensors and apply it to show that a best nonnegative rank-r approximation of a positive tensor can never be obtained by deflation. As an aside, we verify that the Euclidean distance (ED) discriminants of the Segre variety and the Veronese variety are hypersurfaces and give defining equations of these ED discriminants.

[1]  M. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[2]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[3]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[4]  S. Friedland,et al.  Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors , 2013, 1311.1561.

[5]  B. Sturmfels,et al.  The number of eigenvalues of a tensor , 2010, 1004.4953.

[6]  P. Comon,et al.  Subtracting a best rank-1 approximation does not necessarily decrease tensor rank , 2015 .

[7]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[8]  Moody T. Chu,et al.  Low-Dimensional Polytope Approximation and Its Applications to Nonnegative Matrix Factorization , 2008, SIAM J. Sci. Comput..

[9]  Shmuel Friedland,et al.  The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..

[10]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[11]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[12]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[13]  Stephen A. Vavasis,et al.  On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..

[14]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[15]  Haesun Park,et al.  Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework , 2014, J. Glob. Optim..

[16]  Ho Ngoc-Diep Nonnegative matrix factorizationalgorithms and applications , 2008 .

[17]  Zbynek Koldovský,et al.  Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.

[18]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[19]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[20]  Raf Vandebril,et al.  On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..

[21]  Michael P. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[22]  Annali DI Matematica,et al.  Annali di Matematica pura ed applicata , 1892 .

[23]  Bernd Sturmfels,et al.  Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..

[24]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..

[25]  Pierre Comon,et al.  Rank-1 Tensor Approximation Methods and Application to Deflation , 2015, ArXiv.

[26]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[27]  Andrzej Cichocki,et al.  Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm , 2015, IEEE Transactions on Signal Processing.

[28]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[29]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[30]  S. Friedland Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.

[31]  L. Qi,et al.  E-Characteristic Polynomials of Tensors , 2012, 1208.1607.

[32]  J. Landsberg Tensors: Geometry and Applications , 2011 .

[33]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[34]  Hyunsoo Kim,et al.  Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method , 2008, SIAM J. Matrix Anal. Appl..

[35]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[36]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[37]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[38]  Michael I. Jordan Graphical Models , 2003 .

[39]  S. Banach Über homogene Polynome in ($L^{2}$) , 1938 .

[40]  Andrzej Cichocki,et al.  Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.

[41]  Pierre Comon,et al.  Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.

[42]  Shmuel Friedland,et al.  Some approximation problems in semi-algebraic geometry , 2014, 1412.3178.

[43]  Pierre Comon,et al.  Fast Decomposition of Large Nonnegative Tensors , 2015, IEEE Signal Processing Letters.

[44]  Chris Peterson,et al.  Induction for secant varieties of Segre varieties , 2006, math/0607191.

[45]  Giorgio Ottaviani,et al.  An Algorithm For Generic and Low-Rank Specific Identifiability of Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..

[46]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[47]  Pierre Comon,et al.  Nonnegative approximations of nonnegative tensors , 2009, ArXiv.

[48]  Pierre Comon,et al.  Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.

[49]  Nir Friedman,et al.  Probabilistic Graphical Models , 2009, Data-Driven Computational Neuroscience.

[50]  David Dunson,et al.  Bayesian Factorizations of Big Sparse Tensors , 2013, Journal of the American Statistical Association.

[51]  Luke Oeding,et al.  Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..

[52]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[53]  Giorgio Ottaviani,et al.  On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..

[54]  Andrzej Cichocki,et al.  Tensor Deflation for CANDECOMP/PARAFAC— Part II: Initialization and Error Analysis , 2015, IEEE Transactions on Signal Processing.

[55]  Lek-Heng Lim Tensors and Hypermatrices , 2013 .

[56]  Mauricio Velasco,et al.  Linearization Functors on Real Convex Sets , 2012, SIAM J. Optim..

[57]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[58]  C. Bocci,et al.  Refined methods for the identifiability of tensors , 2013, 1303.6915.

[59]  Haesun Park,et al.  Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons , 2011, SIAM J. Sci. Comput..

[60]  Thomas Lickteig Typical tensorial rank , 1985 .

[61]  Sanjeev Arora,et al.  Computing a nonnegative matrix factorization -- provably , 2011, STOC '12.

[62]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[63]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[64]  Markus Banagl,et al.  The tensor product of function semimodules , 2013 .

[65]  Chih-Jen Lin,et al.  Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.

[66]  Qiang Zhang,et al.  Tensor methods for hyperspectral data analysis: a space object material identification study. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[67]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[68]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .