Uniqueness of Nonnegative Tensor Approximations
暂无分享,去创建一个
Pierre Comon | Yang Qi | Lek-Heng Lim | P. Comon | Lek-Heng Lim | Yang Qi
[1] M. Friedlander,et al. Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..
[2] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[3] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[4] S. Friedland,et al. Best approximation on semi-algebraic sets and k-border rank approximation of symmetric tensors , 2013, 1311.1561.
[5] B. Sturmfels,et al. The number of eigenvalues of a tensor , 2010, 1004.4953.
[6] P. Comon,et al. Subtracting a best rank-1 approximation does not necessarily decrease tensor rank , 2015 .
[7] P. Comon,et al. Generic and typical ranks of multi-way arrays , 2009 .
[8] Moody T. Chu,et al. Low-Dimensional Polytope Approximation and Its Applications to Nonnegative Matrix Factorization , 2008, SIAM J. Sci. Comput..
[9] Shmuel Friedland,et al. The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..
[10] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[11] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[12] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..
[13] Stephen A. Vavasis,et al. On the Complexity of Nonnegative Matrix Factorization , 2007, SIAM J. Optim..
[14] Rekha R. Thomas,et al. The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.
[15] Haesun Park,et al. Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework , 2014, J. Glob. Optim..
[16] Ho Ngoc-Diep. Nonnegative matrix factorizationalgorithms and applications , 2008 .
[17] Zbynek Koldovský,et al. Cramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition , 2012, IEEE Transactions on Signal Processing.
[18] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[19] Tamir Hazan,et al. Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.
[20] Raf Vandebril,et al. On Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..
[21] Michael P. Friedlander,et al. Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..
[22] Annali DI Matematica,et al. Annali di Matematica pura ed applicata , 1892 .
[23] Bernd Sturmfels,et al. Algebraic geometry of Bayesian networks , 2005, J. Symb. Comput..
[24] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..
[25] Pierre Comon,et al. Rank-1 Tensor Approximation Methods and Application to Deflation , 2015, ArXiv.
[26] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..
[27] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part I: Alternating Subspace Update Algorithm , 2015, IEEE Transactions on Signal Processing.
[28] S. Gaubert,et al. Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.
[29] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[30] S. Friedland. Best rank one approximation of real symmetric tensors can be chosen symmetric , 2011, 1110.5689.
[31] L. Qi,et al. E-Characteristic Polynomials of Tensors , 2012, 1208.1607.
[32] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[33] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[34] Hyunsoo Kim,et al. Nonnegative Matrix Factorization Based on Alternating Nonnegativity Constrained Least Squares and Active Set Method , 2008, SIAM J. Matrix Anal. Appl..
[35] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[36] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[37] L. Qi. Eigenvalues and invariants of tensors , 2007 .
[38] Michael I. Jordan. Graphical Models , 2003 .
[39] S. Banach. Über homogene Polynome in ($L^{2}$) , 1938 .
[40] Andrzej Cichocki,et al. Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation , 2012, IEEE Transactions on Signal Processing.
[41] Pierre Comon,et al. Subtracting a best rank-1 approximation may increase tensor rank , 2009, 2009 17th European Signal Processing Conference.
[42] Shmuel Friedland,et al. Some approximation problems in semi-algebraic geometry , 2014, 1412.3178.
[43] Pierre Comon,et al. Fast Decomposition of Large Nonnegative Tensors , 2015, IEEE Signal Processing Letters.
[44] Chris Peterson,et al. Induction for secant varieties of Segre varieties , 2006, math/0607191.
[45] Giorgio Ottaviani,et al. An Algorithm For Generic and Low-Rank Specific Identifiability of Complex Tensors , 2014, SIAM J. Matrix Anal. Appl..
[46] N. Sidiropoulos,et al. On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .
[47] Pierre Comon,et al. Nonnegative approximations of nonnegative tensors , 2009, ArXiv.
[48] Pierre Comon,et al. Tensors : A brief introduction , 2014, IEEE Signal Processing Magazine.
[49] Nir Friedman,et al. Probabilistic Graphical Models , 2009, Data-Driven Computational Neuroscience.
[50] David Dunson,et al. Bayesian Factorizations of Big Sparse Tensors , 2013, Journal of the American Statistical Association.
[51] Luke Oeding,et al. Eigenvectors of tensors and algorithms for Waring decomposition , 2011, J. Symb. Comput..
[52] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[53] Giorgio Ottaviani,et al. On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..
[54] Andrzej Cichocki,et al. Tensor Deflation for CANDECOMP/PARAFAC— Part II: Initialization and Error Analysis , 2015, IEEE Transactions on Signal Processing.
[55] Lek-Heng Lim. Tensors and Hypermatrices , 2013 .
[56] Mauricio Velasco,et al. Linearization Functors on Real Convex Sets , 2012, SIAM J. Optim..
[57] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[58] C. Bocci,et al. Refined methods for the identifiability of tensors , 2013, 1303.6915.
[59] Haesun Park,et al. Fast Nonnegative Matrix Factorization: An Active-Set-Like Method and Comparisons , 2011, SIAM J. Sci. Comput..
[60] Thomas Lickteig. Typical tensorial rank , 1985 .
[61] Sanjeev Arora,et al. Computing a nonnegative matrix factorization -- provably , 2011, STOC '12.
[62] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[63] H. Sebastian Seung,et al. Algorithms for Non-negative Matrix Factorization , 2000, NIPS.
[64] Markus Banagl,et al. The tensor product of function semimodules , 2013 .
[65] Chih-Jen Lin,et al. Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.
[66] Qiang Zhang,et al. Tensor methods for hyperspectral data analysis: a space object material identification study. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.
[67] Rasmus Bro,et al. MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .
[68] J. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .