Reflections on the discovery space for a large ultraviolet-visible telescope: inputs from the European-led EUVO exercise

Abstract. The solutions to a number of astrophysical problems require access to the ultraviolet, optical, and infrared from space-based facilities, with capabilities beyond those available with Hubble Space Telescope or James Webb Space Telescope. A large ultraviolet-optical-infrared telescope will need to have a large collecting area and milliarcsecond angular resolution capabilities plus highly efficient instruments, providing a revolutionary enhancement in capability. During 2013, the European astronomical community was involved in an exercise to outline the big science that could be achieved with such a facility; the proposal was called EUVO (as per European Ultraviolet-Visible Observatory). Inspired by that work, we describe a proposal on future science and instrumentation to be carried out with a 10-m class telescope.

[1]  A. C. Cameron,et al.  Stellar magnetism: empirical trends with age and rotation , 2014, 1404.2733.

[2]  Gerd-Jan van Zadelhoff,et al.  Axi-symmetric models of ultraviolet radiative transfer with applications to circumstellar disk chemistry , 2003 .

[3]  D. Baade,et al.  UVMag: stellar formation, evolution, structure and environment with space UV and visible spectropolarimetry , 2014, 1407.2868.

[4]  Detlev Koester,et al.  The frequency of planetary debris around young white dwarfs , 2014, 1404.2617.

[5]  E. Verdugo,et al.  Hubble Space Telescope STIS Spectrum of RW Aurigae A: Evidence for an Ionized Beltlike Structure and Mass Ejection in Timescales of a Few Hours , 2003 .

[6]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[7]  Robert Winglee,et al.  Time-dependent Accretion by Magnetic Young Stellar Objects as a Launching Mechanism for Stellar Jets , 1997 .

[8]  A. Reiners,et al.  A BCool magnetic snapshot survey of solar-type stars , 2013, 1311.3374.

[9]  A. Castro,et al.  The formation of planetary disks and winds: an ultraviolet view , 2008, 0809.0396.

[10]  R. Plambeck,et al.  Observations of CO in L 1551 : evidence for stellar wind driven shocks. , 1980 .

[11]  Harry L. Shipman,et al.  Metals in the variable DA G29-38 , 1997 .

[12]  Giampiero Naletto,et al.  Building galaxies, stars, planets and the ingredients for life between the stars. The science behind the European Ultraviolet-Visible Observatory , 2013, 1306.3358.

[13]  B. A.,et al.  Stellar dynamo driven wind braking versus disc coupling , 2005 .

[14]  Kevin France,et al.  A HUBBLE SPACE TELESCOPE SURVEY OF H2 EMISSION IN THE CIRCUMSTELLAR ENVIRONMENTS OF YOUNG STARS , 2012, 1207.4789.

[15]  Jean-Michel Reess,et al.  Static spectropolarimeter concept adapted to space conditions and wide spectrum constraints. , 2015, Applied optics.

[16]  E. Parker Hydromagnetic Dynamo Models , 1955 .

[17]  G. A. Wade,et al.  A high-resolution spectropolarimetric survey of Herbig Ae/Be stars – I. Observations and measurements , 2012, 1211.2907.

[18]  Anneila I. Sargent,et al.  The evolution of outflow-envelope interactions in low-mass protostars , 2006 .

[19]  Н.И. Шакура,et al.  Black Holes in Binary Systems. Observational Appearance , 1973 .

[20]  J. E. Pringle,et al.  Predictions for the frequency and orbital radii of massive extrasolar planets , 2002 .

[21]  J. McClintock,et al.  Black Holes in Binary Systems , 1992 .

[22]  J. Martin-Pintado,et al.  Discovery of a remarkable bipolar flow and exciting source in the ρ Ophiuchi cloud core , 1990 .

[23]  David E. Trilling,et al.  Easy Come, Easy Go: Orbital Migration and the Frequency of Giant Planet Formation , 2000 .

[24]  Alfred Vidal-Madjar,et al.  β Pictoris, a young planetary system? A review , 1998 .

[25]  Robert E. Wilson,et al.  BLACK HOLES IN BINARY SYSTEMS , 1973 .

[26]  G. Hebrard,et al.  FUSE observations of H2 around the Herbig AeBe stars HD 100546 and HD 163296 , 2003 .

[27]  A. Castro,et al.  On the source of dense outflows from T Tauri stars – III. Winds driven from the star–disc shear layer , 2010, 1011.1230.

[28]  Elizabeth A. Lada,et al.  Protostars and Planets V Oral Program , 2005 .

[29]  A. I. Gómez de Castro,et al.  The fresnel interferometric imager , 2009 .

[30]  A. V. Koldoba,et al.  MRI-driven accretion on to magnetized stars: global 3D MHD simulations of magnetospheric and boundary layer regimes , 2011, 1111.3068.

[31]  I. S. Savanov,et al.  UV detectors for spectrographs of WSO-UV project , 2014 .

[32]  Wilhelm Kley,et al.  MAGNETIZED ACCRETION AND DEAD ZONES IN PROTOSTELLAR DISKS , 2013, 1301.1487.

[33]  J. Eislöffel,et al.  Proper motion measurements and high resolution imaging of the HH 46/47 outflow , 1994 .

[34]  Ralph E. Pudritz,et al.  The origin of forbidden line emission from young stellar objects , 1993 .

[35]  A. Castro,et al.  On the source of dense outflows from T Tauri stars — I. Photoionization of cool MHD disc winds , 2003 .

[36]  B. Zuckerman,et al.  The Chemical Composition of an Extrasolar Minor Planet , 2007, 0708.0198.

[37]  J. Farihi,et al.  Evidence for Water in the Rocky Debris of a Disrupted Extrasolar Minor Planet , 2013, Science.

[38]  A. I. Gómez de Castro,et al.  New Constraints on Protostellar Jet Collimation from High-Density Gas UV Tracers , 2001 .

[39]  Francesca Bacciotti,et al.  JET ROTATION INVESTIGATED IN THE NEAR-ULTRAVIOLET WITH THE HUBBLE SPACE TELESCOPE IMAGING SPECTROGRAPH , 2012 .

[40]  Christopher D. Koresko,et al.  Measuring the Magnetic Field on the Classical T Tauri Star BP Tauri , 1999 .

[41]  UCLA,et al.  TWO EXTRASOLAR ASTEROIDS WITH LOW VOLATILE-ELEMENT MASS FRACTIONS , 2012, 1203.2885.

[42]  C. Lada,et al.  Spectral evolution of young stellar objects , 1986 .

[43]  Dimitri Veras,et al.  Formation of planetary debris discs around white dwarfs – I. Tidal disruption of an extremely eccentric asteroid , 2014, 1409.2493.

[44]  T. Marsh,et al.  A Gaseous Metal Disk Around a White Dwarf , 2006, Science.

[45]  Eva Villaver,et al.  HOT JUPITERS AND COOL STARS , 2014, 1407.7879.

[46]  X. Delfosse,et al.  Large-scale magnetic topologies of late M dwarfs⋆ , 2008, 0808.1423.

[47]  B. Zuckerman,et al.  INFRARED SIGNATURES OF DISRUPTED MINOR PLANETS AT WHITE DWARFS , 2009, 0901.0973.

[48]  Dimitri Veras,et al.  Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution , 2013, 1302.3615.

[49]  R. H. D. Townsend,et al.  DISCOVERY OF ROTATIONAL BRAKING IN THE MAGNETIC HELIUM-STRONG STAR SIGMA ORIONIS E , 2010, 1004.2038.

[50]  Tom Ray,et al.  Protostellar jets in context , 2009 .

[51]  Ana Inés Gómez de Castro,et al.  The Fresnel space imager as a disk evolution watcher , 2011 .

[52]  P. J. Armitage,et al.  Investigating fragmentation conditions in self-gravitating accretion discs , 2005 .

[53]  Aki Roberge,et al.  Stabilization of the disk around β Pictoris by extremely carbon-rich gas , 2006, Nature.

[54]  X. Delfosse,et al.  Large‐scale magnetic topologies of M dwarfs , 2009 .

[55]  Charles F. Gammie,et al.  Layered Accretion in T Tauri Disks , 1996 .

[56]  William R. Ward,et al.  Survival of Planetary Systems , 1997 .

[57]  Geoffrey A. Blake,et al.  HIGH-RESOLUTION 5 μm SPECTROSCOPY OF TRANSITIONAL DISKS , 2009 .