Physically Informed Signal Processing Methods for Piano Sound Synthesis: A Research Overview

This paper reviews recent developments in physics-based synthesis of piano. The paper considers the main components of the instrument, that is, the hammer, the string, and the soundboard. Modeling techniques are discussed for each of these elements, together with implementation strategies. Attention is focused on numerical issues, and each implementation technique is described in light of its efficiency and accuracy properties. As the structured audio coding approach is gaining popularity, the authors argue that the physical modeling approach will have relevant applications in the field of multimedia communication.

[1]  Davide Rocchesso,et al.  Low-level sound models: resonators, interactions, surface textures , 2003 .

[2]  Julius O. Smith,et al.  Traveling Wave Implementation of a Lossless Mode-coupling Filter and the Wave Digital Hammer , 1994, ICMC.

[3]  Hanna Järveläinen,et al.  Perceptual Study of Decay Parameters in Plucked String Synthesis , 2000 .

[4]  A. Chaigne,et al.  Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods , 1994 .

[5]  Federico Avanzini,et al.  Chapter 8 Low-level models : resonators , interactions , surface textures , .

[6]  A. Stulov Hysteretic model of the grand piano hammer felt , 1995 .

[7]  Davide Rocchesso,et al.  Circulant and elliptic feedback delay networks for artificial reverberation , 1997, IEEE Trans. Speech Audio Process..

[8]  Julius O. Smith,et al.  Principles of Digital Waveguide Models of Musical Instruments , 2002 .

[9]  Julius O. Smith,et al.  Extensions of the Karplus-Strong Plucked-String Algorithm , 1983 .

[10]  Unto K. Laine,et al.  Splitting the Unit Delay - Tools for fractional delay filter design , 1996 .

[11]  Julius O. Smith,et al.  Viewpoints on the History of Digital Synthesis , 1991, ICMC.

[12]  Gabriel Weinreich,et al.  Coupled piano strings , 1977 .

[13]  S. Schwerman,et al.  The Physics of Musical Instruments , 1991 .

[14]  Giovanni De Poli,et al.  A Multi-Rate Approach to Instrument Body Modeling for Real-Time Sound Synthesis Applications , 2002 .

[15]  Dottorato Di Ricerca,et al.  COMPUTATIONAL ISSUES IN PHYSICALLY-BASED SOUND MODELS , 2001 .

[16]  Harvey Fletcher,et al.  Quality of Piano Tones , 1962 .

[17]  D. Hall,et al.  Piano string excitation. VI: Nonlinear modeling , 1992 .

[18]  Matti Karjalainen,et al.  Audibility of the timbral effects of inharmonicity in stringed instrument tones , 2001 .

[19]  Giovanni De Poli A Tutorial on Digital Sound Synthesis Techniques , 1983 .

[20]  Balázs Bank Accurate and efficient modeling of beating and two-stage decay for string instrument synthesis , 2001 .

[21]  M. Lang,et al.  Simple and robust method for the design of allpass filters using least-squares phase error criterion , 1994 .

[22]  Julius O. Smith,et al.  A Simplified Approach to Modeling Dispersion Caused by Stiffness in Strings and Plates , 1994, ICMC.

[23]  Balázs Bank,et al.  On The Nonlinear Commuted Synthesis Of The Piano , 2002 .

[24]  Giovanni De Poli,et al.  Pedal resonance effect simulation device for digital pianos , 1998 .

[25]  Julius O. Smith,et al.  Commuted Piano Synthesis , 1995, ICMC.

[26]  Davide Rocchesso,et al.  Elimination of delay-free loops in discrete-time models of nonlinear acoustic systems , 2000, IEEE Trans. Speech Audio Process..

[27]  Michael A. Casey Understanding Musical Sound with Forward Models and Physical Models , 1994, Connect. Sci..

[28]  Eric D. Scheirer,et al.  Structured audio and effects processing in the MPEG-4 multimedia standard , 1999, Multimedia Systems.

[29]  V. Valimaki,et al.  Robust loss filter design for digital waveguide synthesis of string tones , 2003, IEEE Signal Processing Letters.

[30]  Balázs Bank Physics-Based Sound Synthesis of the Piano , 2000 .

[31]  Eihachiro Nakamae,et al.  Synchronizing Computer Graphics Animation and Audio , 1998, IEEE Multim..

[32]  Guy E. Garnett Modeling Piano Sound using Waveguide Digital Filtering Techniques , 1987, ICMC.

[33]  Julius O. Smith,et al.  Developments for the Commuted Piano , 1995, ICMC.

[34]  Richard Kronland-Martinet,et al.  Resynthesis of Coupled Piano String Vibrations Based on Physical Modeling , 2001 .

[35]  Balázs Bank Nonlinear Interaction in the Digital Waveguide With the Application to Piano Sound Synthesis , 2000, ICMC.

[36]  Barry Vercoe,et al.  Structured audio: creation, transmission, and rendering of parametric sound representations , 1998, Proc. IEEE.

[37]  Davide Rocchesso,et al.  Bandwidth of perceived inharmonicity for physical modeling of dispersive strings , 1999, IEEE Trans. Speech Audio Process..

[38]  Vesa Välimäki,et al.  Physical Modeling of Plucked String Instruments with Application to Real-Time Sound Synthesis , 1996 .

[39]  Jean-Marc Jot,et al.  Digital Delay Networks for Designing Artificial Reverberators , 1991 .

[40]  Davide Rocchesso,et al.  A Physical Piano Model for Music Performance , 1997, ICMC.

[41]  Vesa Välimäki,et al.  Development and Calibration of a Guitar Synthesizer , 1997 .

[42]  A. Chaigne,et al.  Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer‐string parameters , 1994 .