Black and Gray-Box Identification of a Hydraulic Pumping System
暂无分享,去创建一个
[1] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[2] Richard F. Gunst,et al. Applied Regression Analysis , 1999, Technometrics.
[3] S. Billings,et al. Least squares parameter estimation algorithms for non-linear systems , 1984 .
[4] L. Piroddi,et al. An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .
[5] Ricardo H. C. Takahashi,et al. Multi-objective parameter estimation via minimal correlation criterion , 2007 .
[6] George W. Irwin,et al. Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme , 2007, Neurocomputing.
[7] Sheng Chen,et al. Orthogonal least squares methods and their application to non-linear system identification , 1989 .
[8] Sheng Chen,et al. Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .
[9] Daniel Zwillinger,et al. CRC standard mathematical tables and formulae; 30th edition , 1995 .
[10] Luis A. Aguirre,et al. Using Steady-State Prior Knowledge to Constrain Parameter Estimates in Nonlinear System Identification , 2002 .
[11] Ricardo H. C. Takahashi,et al. Multiobjective parameter estimation for non-linear systems: affine information and least-squares formulation , 2007, Int. J. Control.
[12] L. A. Aguirre,et al. Use of a priori information in the identification of global nonlinear models-a case study using a buck converter , 2000 .
[13] James E. Baker,et al. Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.
[14] Luis A. Aguirre,et al. A nonlinear correlation function for selecting the delay time in dynamical reconstructions , 1995 .
[15] L. A. Aguirre,et al. Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation , 2004 .
[16] N. Draper,et al. Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .
[17] L. A. Aguirre,et al. On the interpretation and practice of dynamical differences between Hammerstein and Wiener models , 2005 .
[18] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[19] Yacov Y. Haimes,et al. Multiobjective Decision Making: Theory and Methodology , 1983 .
[20] Jay H. Lee,et al. Modified subspace identification for long-range prediction model for inferential control , 2008 .
[21] Luigi Piroddi,et al. Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..
[22] Om P. Malik,et al. Identification of nonlinear systems by Takagi-Sugeno fuzzy logic grey box modeling for real-time control , 2005 .
[23] Stefan Jakubek,et al. Total least squares in fuzzy system identification: An application to an industrial engine , 2008, Eng. Appl. Artif. Intell..
[24] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[25] D. Zwillinger,et al. Standard Mathematical Tables and Formulae , 1997, The Mathematical Gazette.
[26] Christian Inard,et al. Grey-box identification of air-handling unit elements , 2007 .
[27] W. Hays. Applied Regression Analysis. 2nd ed. , 1981 .