Black and Gray-Box Identification of a Hydraulic Pumping System

The use of auxiliary information during the identification of nonlinear systems can be handled in different ways and at different levels. In this brief, static information of a 15 kW hydraulic pumping system is used as a priori knowledge in the parameters estimation of polynomial models which are compared to polynomial and neural models obtained by black-box techniques. The aim is to find models with good performance in both transient and steady-state regimes. This brief presents a novel bi-objective problem that uses free-run simulation and a new decision-maker. The optimization problem is solved using a genetic algorithm. Compared with other techniques, the proposed approach can lead to models with better dynamic and static performance.

[1]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[2]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[3]  S. Billings,et al.  Least squares parameter estimation algorithms for non-linear systems , 1984 .

[4]  L. Piroddi,et al.  An identification algorithm for polynomial NARX models based on simulation error minimization , 2003 .

[5]  Ricardo H. C. Takahashi,et al.  Multi-objective parameter estimation via minimal correlation criterion , 2007 .

[6]  George W. Irwin,et al.  Prediction- and simulation-error based perceptron training: Solution space analysis and a novel combined training scheme , 2007, Neurocomputing.

[7]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[8]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[9]  Daniel Zwillinger,et al.  CRC standard mathematical tables and formulae; 30th edition , 1995 .

[10]  Luis A. Aguirre,et al.  Using Steady-State Prior Knowledge to Constrain Parameter Estimates in Nonlinear System Identification , 2002 .

[11]  Ricardo H. C. Takahashi,et al.  Multiobjective parameter estimation for non-linear systems: affine information and least-squares formulation , 2007, Int. J. Control.

[12]  L. A. Aguirre,et al.  Use of a priori information in the identification of global nonlinear models-a case study using a buck converter , 2000 .

[13]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[14]  Luis A. Aguirre,et al.  A nonlinear correlation function for selecting the delay time in dynamical reconstructions , 1995 .

[15]  L. A. Aguirre,et al.  Imposing steady-state performance on identified nonlinear polynomial models by means of constrained parameter estimation , 2004 .

[16]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[17]  L. A. Aguirre,et al.  On the interpretation and practice of dynamical differences between Hammerstein and Wiener models , 2005 .

[18]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[19]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[20]  Jay H. Lee,et al.  Modified subspace identification for long-range prediction model for inferential control , 2008 .

[21]  Luigi Piroddi,et al.  Simulation error minimisation methods for NARX model identification , 2008, Int. J. Model. Identif. Control..

[22]  Om P. Malik,et al.  Identification of nonlinear systems by Takagi-Sugeno fuzzy logic grey box modeling for real-time control , 2005 .

[23]  Stefan Jakubek,et al.  Total least squares in fuzzy system identification: An application to an industrial engine , 2008, Eng. Appl. Artif. Intell..

[24]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[25]  D. Zwillinger,et al.  Standard Mathematical Tables and Formulae , 1997, The Mathematical Gazette.

[26]  Christian Inard,et al.  Grey-box identification of air-handling unit elements , 2007 .

[27]  W. Hays Applied Regression Analysis. 2nd ed. , 1981 .