Diode-less bilayer oxide (WOx–NbOx) device for cross-point resistive memory applications

The combination of a threshold switching device and a resistive switching (RS) device was proposed to suppress the undesired sneak current for the integration of bipolar RS cells in a cross-point array type memory. A simulation for this hybrid-type device shows that the matching of key parameters between switch element and memory element is an important issue. Based on the threshold switching oxides, a conceptual structure with a simple metal-oxide 1-oxide 2-metal stack was provided to accommodate the evolution trend. We show that electroformed W-NbO(x)-Pt devices can simultaneously exhibit both threshold switching and memory switching. A qualitative model was suggested to elucidate the unique properties in a W-NbO(x)-Pt stack, where threshold switching is associated with a localized metal-insulator transition in the NbO(x) bulk, and the bipolar RS derives from a redox at the tip of the localized filament at the WO(x)-NbO(x) interface. Such a simple metal-oxide-metal structure, with functionally separated bulk and interface effects, provides a fabrication advantage for future high-density cross-point memory devices.

[1]  K. L. Chopra,et al.  Current-controlled negative resistance in thin niobium oxide films , 1963 .

[2]  D. V. Geppert A new negative-resistance device , 1963 .

[3]  T. W. Hickmott,et al.  BISTABLE SWITCHING IN NIOBIUM OXIDE DIODES , 1965 .

[4]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[5]  K. Steenbeck,et al.  Electrical switching behaviour of niobium oxide thin films , 1974 .

[6]  H. Pagnia,et al.  Bistable switching in electroformed metal–insulator–metal devices† , 1988 .

[7]  I. Barin Thermochemical data of pure substances , 1989 .

[8]  A. Pergament,et al.  Electroforming and Switching in Oxides of Transition Metals: The Role of Metal-Insulator Transition in the Switching Mechanism , 1996 .

[9]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[10]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[11]  H. Hwang,et al.  Resistance-switching Characteristics of polycrystalline Nb/sub 2/O/sub 5/ for nonvolatile memory application , 2005 .

[12]  Paul D Franzon,et al.  Scaling constraints in nanoelectronic random-access memories , 2005, Nanotechnology.

[13]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[14]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[15]  S. H. Jeon,et al.  A Low‐Temperature‐Grown Oxide Diode as a New Switch Element for High‐Density, Nonvolatile Memories , 2007 .

[16]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[17]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[18]  I. Baek,et al.  High‐Current‐Density CuO x/InZnOx Thin‐Film Diodes for Cross‐Point Memory Applications , 2008 .

[19]  Elena Cianci,et al.  Resistance switching in amorphous and crystalline binary oxides grown by electron beam evaporation and atomic layer deposition , 2008 .

[20]  Cheol Seong Hwang,et al.  (In,Sn)2O3∕TiO2∕Pt Schottky-type diode switch for the TiO2 resistive switching memory array , 2008 .

[21]  J. Yang,et al.  A Family of Electronically Reconfigurable Nanodevices , 2009 .

[22]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[23]  Young-soo Park,et al.  Low‐Temperature‐Grown Transition Metal Oxide Based Storage Materials and Oxide Transistors for High‐Density Non‐volatile Memory , 2009 .

[24]  Insung Kim,et al.  Asymmetric bipolar resistive switching in solution-processed Pt/TiO2/W devices , 2010 .

[25]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[26]  B. Kang,et al.  Resistive switching transition induced by a voltage pulse in a Pt/NiO/Pt structure , 2010 .

[27]  Hyunsang Hwang,et al.  Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications , 2010 .

[28]  B. Park,et al.  Electrically induced conducting nanochannels in an amorphous resistive switching niobium oxide film , 2010 .

[29]  Cheol Seong Hwang,et al.  A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays , 2010, Nanotechnology.

[30]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[31]  S. Ramanathan,et al.  Nanoscale imaging and control of resistance switching in VO2 at room temperature , 2010 .

[32]  B. Park,et al.  Unipolar resistive switching in insulating niobium oxide film and probing electroforming induced metallic components , 2011 .

[33]  Julien Borghetti,et al.  Coexistence of Memristance and Negative Differential Resistance in a Nanoscale Metal‐Oxide‐Metal System , 2011, Advanced materials.

[34]  Qing-Qing Sun,et al.  Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application , 2011 .

[35]  Ping Hu,et al.  Coupled interfaces for misreading avoidance and write current reduction in passive crossbar memory , 2011 .

[36]  Seung Chul Chae,et al.  Oxide Double‐Layer Nanocrossbar for Ultrahigh‐Density Bipolar Resistive Memory , 2011, Advanced materials.

[37]  H. Hwang,et al.  TiO2-based metal-insulator-metal selection device for bipolar resistive random access memory cross-point application , 2011 .