The Continuous Hexachordal Theorem

[1]  Godfried T. Toussaint,et al.  A Pumping Lemma for Homometric Rhythms , 2008, CCCG.

[2]  David Lewin,et al.  Re: The Intervallic Content of a Collection of Notes, Intervallic Relations between a Collection of Notes and Its Complement: An Application to Schoenberg's Hexachordal Pieces , 1960 .

[3]  Proofs and generalizations of Patterson's theorems on homometric complementary sets , 1976 .

[4]  Steven K. Blau The Hexachordal Theorem: A Mathematical Look at Interval Relations in Twelve-Tone Composition , 1999 .

[5]  F. Göbel,et al.  Z-related pairs in microtonal systems , 2000 .

[6]  David Lewin,et al.  Generalized Musical Intervals and Transformations , 1987 .

[7]  Owen Wright,et al.  The modal system of Arab and Persian music, A.D. 1250-1300 , 1976 .

[8]  J. Franklin,et al.  Ambiguities in the X‐ray analysis of crystal structures , 1974 .

[9]  M. Kolountzakis,et al.  Reconstruction of functions from their triple correlations , 2002, math/0207051.

[10]  Marjorie Senechal A point set puzzle revisited , 2008, Eur. J. Comb..

[11]  J. Iglesias On Patterson's cyclotomic sets and how to count them , 1981 .

[12]  Eric Regener,et al.  ON ALLEN FORTE'S THEORY OF CHORDS , 1974 .

[13]  David Lewin,et al.  Re: Intervallic Relations between Two Collections of Notes , 1959 .

[14]  Emmanuel Amiot David Lewin and maximally even sets , 2007 .

[15]  A. Forte The Structure of Atonal Music , 1973 .

[16]  Dmitri Tymoczko,et al.  The Geometry of Musical Chords , 2006, Science.

[17]  M. J. Buerger Interpoint distances in cyclotomic sets , 1978 .

[18]  On the Interval Content of Invertible Hexachords , 1976 .

[19]  Franck Jedrzejewski,et al.  Mathematical theory of music , 2006 .

[20]  Godfried T. Toussaint,et al.  The Geometry of Musical Rhythm , 2013, JCDCG.

[21]  S. Soderberg Z-Related Sets as Dual Inversions , 1995 .

[22]  R. Morris Pitch-Class Complementation and Its Generalizations , 1990 .