Market-driven operational optimization of industrial gas supply chains

Abstract This paper deals with the operational optimization of industrial gas supply chains. Industrial gas networks differ from other applications and require a rather special and shrewd approach to modeling and optimization issues. Currently in industrial gas plants: (i) the raw material is free; (ii) binding contracts and clauses place tight limits on supplies, production and distribution; (iii) electric energy cost fluctuations wield a greater influence over overall production than in other industrial areas; (iv) market demand is subject to multifaceted fluctuations and uncertainties; (v) long-term market demand is usually regulated by take-or-pay contracts; (vi) main users are on-site or connected via pipeline; and (vii) cryogenic storage constitutes a significant expense and encourages companies to veer toward just-in-time production. This paper also provides very general guidelines for dealing with the aforementioned peculiarities, and compares plant-wide and enterprise-wide optimizations of industrial gas networks. An existing network is adopted as industrial case study.

[1]  Jose M. Pinto,et al.  Multiperiod Optimization for Production Planning of Petroleum Refineries , 2005 .

[2]  Flavio Manenti,et al.  Considerations on nonlinear model predictive control techniques , 2011, Comput. Chem. Eng..

[3]  Gintaras V. Reklaitis,et al.  Enterprise-wide modeling & optimization - An overview of emerging research challenges and opportunities , 2007, Comput. Chem. Eng..

[4]  Giulia Bozzano,et al.  Raising the Decision‐Making Level to Improve the Enterprise‐Wide Production Flexibility , 2013 .

[5]  Flavio Manenti,et al.  Fundamentals and Linear Algebra for the Chemical Engineer: Solving Numerical Problems , 2010 .

[6]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[7]  Lawrence Megan,et al.  Dynamic modeling and linear model predictive control of gas pipeline networks , 2001 .

[8]  Josef Kallrath,et al.  Planning and scheduling in the process industry , 2002, OR Spectr..

[9]  Costas D. Maranas,et al.  A Two-Stage Modeling and Solution Framework for Multisite Midterm Planning under Demand Uncertainty , 2000 .

[10]  Flavio Manenti,et al.  Kinetic models analysis , 2009 .

[11]  N. Shah,et al.  Transfer Prices for Multienterprise Supply Chain Optimization , 2001 .

[12]  Josef Kallrath,et al.  Optimal planning in large multi-site production networks , 2000, Eur. J. Oper. Res..

[13]  Eswaran Subrahmanian,et al.  Design and planning under uncertainty: issues on problem formulation and solution , 2003, Comput. Chem. Eng..

[14]  Stéphane Dauzère-Pérès,et al.  Planning and scheduling in a multi-site environment , 1999 .

[15]  Lorenz T. Biegler Large-scale nonlinear programming: an integrating framework for enterprise-wide dynamic optimization , 2007 .

[16]  M. Ierapetritou,et al.  Cost Minimization in an Energy-Intensive Plant Using Mathematical Programming Approaches , 2002 .

[17]  J. M. Pinto,et al.  Mixed-Integer Programming Approach for Short-Term Crude Oil Scheduling , 2004 .

[18]  A. Smith,et al.  A review of air separation technologies and their integration with energy conversion processes , 2001 .

[19]  Jose M. Pinto,et al.  A planning model for petroleum refineries , 2000 .

[20]  Yanfeng Ouyang,et al.  The effect of information sharing on supply chain stability and the bullwhip effect , 2007, Eur. J. Oper. Res..

[21]  Wolfgang Marquardt,et al.  Dynamic predictive scheduling of operational strategies for continuous processes using mixed-logic dynamic optimization , 2007, Comput. Chem. Eng..

[22]  J. Pekny,et al.  Managing a Portfolio of Interdependent New Product Candidates in the Pharmaceutical Industry , 2004 .

[23]  Nilay Shah,et al.  Process industry supply chains: Advances and challenges , 2005, Comput. Chem. Eng..

[24]  R. L. Tousain,et al.  Dynamic optimization in business-wide process control , 2002 .

[25]  M. Rovaglio,et al.  Integrated Multilevel Optimization in Large-Scale Poly(Ethylene Terephthalate) Plants , 2008 .

[26]  Brahim Chaib-draa,et al.  Information Sharing as a Coordination Mechanism for Reducing the Bullwhip Effect in a Supply Chain , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[27]  H. V. Landeghem,et al.  Robust planning: a new paradigm for demand chain planning , 2002 .

[28]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..

[29]  C. Floudas Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications , 1995 .

[30]  José M. Pinto,et al.  A general modeling framework for the operational planning of petroleum supply chains , 2004, Comput. Chem. Eng..

[31]  Osamu Kimura,et al.  Desiǵn and analysis of Pull System, a method of multi-staǵe production control , 1981 .

[32]  Flavio Manenti,et al.  BzzMath: Library Overview and Recent Advances in Numerical Methods , 2012 .

[33]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[34]  Rajagopalan Srinivasan,et al.  Optimal Contract Selection for the Global Supply and Distribution of Raw Materials , 2007 .

[35]  Flavio Manenti,et al.  Outlier detection in large data sets , 2011, Comput. Chem. Eng..

[36]  William Johns,et al.  Computer‐Aided Chemical Engineering , 2011 .

[37]  Jose M. Pinto,et al.  PLANNING AND SCHEDULING MODELS FOR REFINERY OPERATIONS , 2000 .

[38]  Ignacio E. Grossmann,et al.  Challenges in the new millennium: product discovery and design, enterprise and supply chain optimization, global life cycle assessment , 2004, Comput. Chem. Eng..

[39]  Sunwon Park,et al.  Modeling of Purchase and Sales Contracts in Supply Chain Optimization , 2006, 2006 SICE-ICASE International Joint Conference.

[40]  Flavio Manenti,et al.  Online Data Reconciliation with Poor Redundancy Systems , 2011 .

[41]  Flavio Manenti,et al.  Criteria for Outliers Detection in Nonlinear Regression Problems , 2009 .

[42]  Miguel J. Bagajewicz,et al.  Mixed-Integer Multiobjective Process Planning under Uncertainty , 2002 .

[43]  Ignacio E. Grossmann,et al.  Enterprise‐wide optimization: A new frontier in process systems engineering , 2005 .

[44]  Jose M. Pinto,et al.  A PLANNING MODEL FOR REFINERY DIESEL PRODUCTION , 1998 .

[45]  I. Karimi,et al.  Agent-based supply chain management—1: framework , 2002 .

[46]  M. Rodríguez,et al.  Dynamic modelling and optimisation of cryogenic systems , 2007 .

[47]  Gary Blau,et al.  Risk management in the development of new products in highly regulated industries , 2000 .

[48]  Flavio Manenti,et al.  Interpolation and Regression Models for the Chemical Engineer: Solving Numerical Problems , 2010 .

[49]  H. Simon,et al.  Administrative Behavior: A Study of Decision-Making Processes in Administrative Organization. , 1959 .

[50]  B. Erik Ydstie,et al.  Distributed decision making in complex organizations: the adaptive enterprise , 2004, Comput. Chem. Eng..

[51]  Joseph Z. Lu Challenging control problems and emerging technologies in enterprise optimization , 2001 .

[52]  Christodoulos A. Floudas,et al.  Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review , 2004, Comput. Chem. Eng..

[53]  Rajagopalan Srinivasan,et al.  Agent-based supply chain management—2: a refinery application , 2002 .

[54]  Ignacio E. Grossmann,et al.  A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network , 2003, Comput. Chem. Eng..

[55]  Sukoyo,et al.  Production planning for multi-site batch plants with the milp method , 2004 .

[56]  Gintaras V. Reklaitis Overview of planning and scheduling technologies , 2000 .

[57]  Rajagopalan Srinivasan,et al.  From PSE to PSE2 - Decision support for resilient enterprises , 2009, Comput. Chem. Eng..

[58]  A. C. Hoffmann,et al.  AIChE Symposium Series , 1999 .

[59]  Flavio Manenti,et al.  Nonlinear Model Predictive Control: A Self-Adaptive Approach , 2010 .

[60]  Ignacio E. Grossmann,et al.  Integrating complex economic objectives with the design and planning of offshore oilfield infrastructures , 2000 .

[61]  Josef Kallrath,et al.  Combined strategic and operational planning – an MILP success story in chemical industry , 2002, OR Spectr..

[62]  Iftekhar A. Karimi,et al.  Planning and scheduling of parallel semicontinuous processes. 1. Production planning , 1997 .