Quantum Communication Complexity

Can quantum communication be more efficient than its classical counterpart? Holevo's theorem rules out the possibility of communicating more than n bits of classical information by the transmission of n quantum bits—unless the two parties are entangled, in which case twice as many classical bits can be communicated but no more. In apparent contradiction, there are distributed computational tasks for which quantum communication cannot be simulated efficiently by classical means. In some cases, the effect of transmitting quantum bits cannot be achieved classically short of transmitting an exponentially larger number of bits. In a similar vein, can entanglement be used to save on classical communication? It is well known that entanglement on its own is useless for the transmission of information. Yet, there are distributed tasks that cannot be accomplished at all in a classical world when communication is not allowed, but that become possible if the non-communicating parties share prior entanglement. This leads to the question of how expensive it is, in terms of classical communication, to provide an exact simulation of the spooky power of entanglement.

[1]  P. Libby The Scientific American , 1881, Nature.

[2]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[3]  Harold Abelson,et al.  Lower bounds on information transfer in distributed computations , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[4]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[5]  Bala Kalyanasundaram,et al.  The Probabilistic Communication Complexity of Set Intersection , 1992, SIAM J. Discret. Math..

[6]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[7]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[8]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[9]  N. Mermin What's Wrong with these Elements of Reality? , 1990 .

[10]  N. Mermin Quantum mysteries revisited , 1990 .

[11]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[12]  N. Mermin Whats Wrong with those Epochs , 1990 .

[13]  Ilan Newman,et al.  Private vs. Common Random Bits in Communication Complexity , 1991, Inf. Process. Lett..

[14]  Achin Sen Comment on ‘‘Quantum mysteries revisited,’’ by N. David Mermin [Am. J. Phys. 58, 731–734 (1990)] , 1991 .

[15]  Tim Maudlin Bell's Inequality, Information Transmission, and Prism Models , 1992, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[16]  G. Brassard,et al.  Oracle Quantum Computing , 1992, Workshop on Physics and Computation.

[17]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[18]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[19]  L. Hardy,et al.  Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. , 1992, Physical review letters.

[20]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[21]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[22]  N. Gisin,et al.  Quantum cryptography , 1998 .

[23]  Ilan Newman,et al.  Public vs. private coin flips in one round communication games (extended abstract) , 1996, STOC '96.

[24]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[25]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[26]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[27]  Lov K. Grover Quantum Telecomputation , 1997 .

[28]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[29]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[30]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[31]  Amnon Ta-Shma,et al.  Classical versus quantum communication complexity , 1999, SIGA.

[32]  Michael Steiner,et al.  Towards quantifying non-local information transfer: finite-bit non-locality , 1999, quant-ph/9902014.

[33]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[34]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[35]  N. Gisin,et al.  A local hidden variable model of quantum correlation exploiting the detection loophole , 1999 .

[36]  Gilles Brassard,et al.  Cost of Exactly Simulating Quantum Entanglement with Classical Communication , 1999 .

[37]  Hartmut Klauck,et al.  Quantum Communication Complexity , 2022 .

[38]  Cerf,et al.  Classical teleportation of a quantum Bit , 2000, Physical review letters.

[39]  Harry Buhrman,et al.  Quantum Computing and Communication Complexity , 2001, Bull. EATCS.

[40]  Hartmut Klauck,et al.  On quantum and probabilistic communication: Las Vegas and one-way protocols , 2000, STOC '00.

[41]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[42]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[43]  Ronald de Wolf,et al.  Communication complexity lower bounds by polynomials , 1999, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[44]  Dave Bacon,et al.  Classical simulation of quantum entanglement without local hidden variables , 2001 .

[45]  Ronald de Wolf,et al.  Improved Quantum Communication Complexity Bounds for Disjointness and Equality , 2001, STACS.

[46]  Ronald de Wolf,et al.  Quantum communication and complexity , 2002, Theor. Comput. Sci..

[47]  Stefan Wolf,et al.  Pseudo-telepathy, entanglement, and graph colorings , 2002, Proceedings IEEE International Symposium on Information Theory,.

[48]  S. Wolf,et al.  The impossibility of pseudotelepathy without quantum entanglement , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[49]  Gilles Brassard,et al.  Multi-party Pseudo-Telepathy , 2003, WADS.

[50]  D. Bacon,et al.  Communication cost of simulating Bell correlations. , 2003, Physical review letters.

[51]  A. Razborov Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.

[52]  Andris Ambainis,et al.  Quantum search of spatial regions , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[53]  D. Bacon,et al.  Bell inequalities with auxiliary communication. , 2002, Physical review letters.

[54]  Gilles Brassard Quantum communication complexity: a survey , 2004, Proceedings. 34th International Symposium on Multiple-Valued Logic.

[55]  Andris Ambainis,et al.  Communication complexity in a 3-computer model , 1996, Algorithmica.