Best proximity points for α–ψ-proximal contractive type mappings and applications

Let A and B be two nonempty subsets of a metric space (X,d). A best proximity point of a non-self-mapping T:A→B is a point x⁎∈A satisfying the equality d(x⁎,Tx⁎)=d(A,B), where d(A,B)=inf{d(a,b):a∈A,b∈B}. In this paper, we introduce a new concept of α–ψ-proximal contractive type mappings and establish best proximity point theorems for such mappings in complete metric spaces. Several applications and interesting consequences of our obtained results are presented.

[1]  Asier Ibeas,et al.  Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with some applications , 2013, Appl. Math. Comput..

[2]  Naseer Shahzad,et al.  Best proximity pairs and equilibrium pairs for Kakutani multimaps , 2009 .

[3]  V. Lakshmikantham,et al.  Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces , 2009 .

[4]  Calogero Vetro,et al.  Best proximity points for cyclic Meir–Keeler contractions , 2008 .

[5]  S. Sadiq Basha,et al.  Best proximity point theorems generalizing the contraction principle , 2011 .

[6]  A. Abkar,et al.  Best Proximity Points for Cyclic Mappings in Ordered Metric Spaces , 2011, J. Optim. Theory Appl..

[7]  Bessem Samet,et al.  Fixed point theorems for α–ψ-contractive type mappings , 2012 .

[8]  V. Sankar Raj,et al.  A best proximity point theorem for weakly contractive non-self-mappings , 2011 .

[9]  Bessem Samet,et al.  Generalized - Contractive Type Mappings and Related Fixed Point Theorems with Applications , 2012 .

[10]  William A. Kirk,et al.  FIXED POINTS FOR MAPPINGS SATISFYING CYCLICAL CONTRACTIVE CONDITIONS , 2008 .

[11]  S. Banach Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales , 1922 .

[12]  Ky Fan,et al.  Extensions of two fixed point theorems of F. E. Browder , 1969 .

[13]  Calogero Vetro,et al.  Best proximity points: Convergence and existence theorems for p-cyclic mappings , 2010 .

[14]  João B. Prolla,et al.  Fixed-point theorems for set-valued mappings and existence of best approximants , 1983 .

[15]  Calogero Vetro,et al.  The existence of best proximity points in metric spaces with the property UC , 2009 .

[16]  V. Sehgal,et al.  A theorem on best approximations , 1989 .

[17]  Naseer Shahzad,et al.  Convergence and existence results for best proximity points , 2009 .

[18]  S. Sadiq Basha,et al.  Extensions of Banach's Contraction Principle , 2010 .

[19]  A. Anthony Eldred,et al.  Existence and convergence of best proximity points , 2006 .

[20]  Simeon Reich,et al.  Approximate selections, best approximations, fixed points, and invariant sets , 1978 .

[21]  S. Sadiq Basha,et al.  Best proximity point theorems: An exploration of a common solution to approximation and optimization problems , 2012, Appl. Math. Comput..

[22]  P. Veeramani,et al.  Some extensions of fan's best approximation theorem , 1992 .