On the Helmholtz decomposition for polyadics
暂无分享,去创建一个
[1] R. Usha,et al. LAMB'S SOLUTION OF STOKES'S EQUATIONS: A SPHERE THEOREM , 1992 .
[2] George Dassios,et al. Low Frequency Scattering , 2000 .
[3] E. Sternberg,et al. On the integration of the equations of motion in the classical theory of elasticity , 1960 .
[4] R. Eubanks,et al. On the Completeness of the Boussinesq-Papkovich Stress Functions , 1956 .
[5] Ismo V. Lindell,et al. Methods for Electromagnetic Field Analysis , 1992 .
[6] R. Kanwal,et al. The existence and completeness of various potentials for the equations of stokes flow , 1971 .
[7] L. Brand,et al. Vector and tensor analysis , 1947 .
[8] P. Ciarlet. A DECOMPOSITION OF L2(Ω)3 AND AN APPLICATION TO MAGNETOSTATIC EQUATIONS , 1993 .
[9] H. Neuber. Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Der Hohlkegel unter Einzellast als Beispiel , 1934 .
[10] G. Dassios,et al. Scattering theorems for complete dyadic fields , 1995 .
[11] E. A. Trowbridge,et al. Elastic wave fields generated by scalar wave functions , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.
[12] Dale A. Woodside. Uniqueness theorems for classical four-vector fields in Euclidean and Minkowski spaces , 1999 .
[13] J. Blake,et al. General solutions of the Stokes' flow equations , 1982 .
[14] J. Mathews. Gravitational Multipole Radiation , 1962 .
[15] D. Pecknold. On the role of the Stokes-Helmholtz decomposition in the derivation of displacement potentials in classical elasticity , 1971 .