A Multilayer Negative-Refractive-Index Transmission-Line (NRI-TL) Metamaterial Free-Space Lens at X-Band

A volumetric free-space negative-refractive-index (NRI) transmission-line (TL) metamaterial lens is described that employs fully printed interdigitated capacitors and meandered inductors designed to exhibit NRI properties at X-band (8-12 GHz). The volumetric topology is realized in a layer-by-layer fashion without any vias, which facilitates easy and rapid fabrication. The fabricated lens was tested for its transmission and dispersion properties using a free-space X-band measurement system consisting of an Agilent network analyzer, standard gain horn antennas, and Rexolite dielectric lenses fabricated in-house, and showed good correspondence with simulations. The focusing ability of the multilayer NRI-TL lens was also verified using a free-space field probing system based on small shielded-loop antennas affixed to a computer-controlled xyz-translator apparatus. Arguably, these results represent the first experimental evidence of coupling between TL-based metamaterials and sources in free space.

[1]  G. Eleftheriades,et al.  Characterization of a volumetric negative-refractive-index transmission-line (NRI-TL) metamaterial for incident waves from free-space , 2006, 2006 First European Conference on Antennas and Propagation.

[2]  G. Eleftheriades,et al.  Characterization of a Multilayered Negative-Refractive-Index Transmission-Line (NRI-TL) Metamaterial , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[3]  G. Eleftheriades,et al.  Volumetric layered transmission-line metamaterial exhibiting a negative refractive index , 2006 .

[4]  K. Aydin,et al.  Focusing of electromagnetic waves by a left-handed metamaterial flat lens. , 2005, Optics express.

[5]  A. Grbic,et al.  Practical limitations of subwavelength resolution using negative-refractive-index transmission-line lenses , 2005, IEEE Transactions on Antennas and Propagation.

[6]  S. Tretyakov,et al.  Three-dimensional isotropic perfect lens based on LC-loaded transmission lines , 2005, physics/0509149.

[7]  A. Grbic,et al.  An isotropic three-dimensional negative-refractive-index transmission-line metamaterial , 2005 .

[8]  K. Balmain,et al.  Negative‐Refractive‐Index Transmission‐Line Metamaterials , 2005 .

[9]  K. Balmain,et al.  Plasmonic Nanowire Metamaterials , 2005 .

[10]  Richard W. Ziolkowski,et al.  Gaussian Beam Interactions with Double‐Negative (DNG) Metamaterials , 2005 .

[11]  George V. Eleftheriades,et al.  A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction , 2005 .

[12]  Manos M. Tentzeris,et al.  Topology and Design of Wide-Band 3D Metamaterials made of Periodically Loaded Transmission Line Arrays , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[13]  J. Bonache,et al.  Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines , 2005, IEEE Transactions on Microwave Theory and Techniques.

[14]  R. Marqués,et al.  Planar magnetoinductive lens for three-dimensional subwavelength imaging , 2005, physics/0503039.

[15]  M. Shamonin,et al.  Resonant frequencies of a split‐ring resonator: Analytical solutions and numerical simulations , 2005 .

[16]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[17]  T. Itoh,et al.  Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line , 2004, IEEE Transactions on Antennas and Propagation.

[18]  T. Itoh,et al.  Planar distributed structures with negative refractive index , 2004, IEEE Transactions on Microwave Theory and Techniques.

[19]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[20]  S. Tretyakov,et al.  Near-field enhancement and imaging in double planar polariton-resonant structures , 2003, physics/0311089.

[21]  Claudio G. Parazzoli,et al.  Free-space focused-beam characterization of left-handed materials , 2003 .

[22]  Ashwin Iyer,et al.  Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial. , 2003, Optics express.

[23]  G. Eleftheriades,et al.  Transmission line models for negative refractive index media and associated implementations without excess resonators , 2003, IEEE Microwave and Wireless Components Letters.

[24]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .

[25]  L. Solymar,et al.  Magnetoinductive waves in one, two, and three dimensions , 2002 .

[26]  G. Eleftheriades,et al.  Negative refractive index metamaterials supporting 2-D waves , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[27]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[28]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[29]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[30]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .