The Kolmogorov–Obukhov Statistical Theory of Turbulence
暂无分享,去创建一个
[1] R. A. Antonia,et al. THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .
[2] B. Birnir. Turbulence of a unidirectional flow , 2008 .
[3] She,et al. Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.
[4] A. Kolmogorov. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.
[5] Marcel Lesieur,et al. Turbulence in fluids , 1990 .
[6] L. Evans. An Introduction to Stochastic Differential Equations , 2014 .
[7] Integrability and regularity of 3D Euler and equations for uniformly rotating fluids , 1996 .
[8] F. Anselmet,et al. High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.
[9] B. Øksendal,et al. Applied Stochastic Control of Jump Diffusions , 2004, Universitext.
[10] A. M. Oboukhov. Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.
[11] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[12] Chia-Ch'iao Lin. Β. Turbulent Flow , 1960 .
[13] K. Sreenivasan,et al. IS THERE SCALING IN HIGH-REYNOLDS-NUMBER TURBULENCE ? , 1998 .
[14] Rabi Bhattacharya,et al. Stochastic processes with applications , 1990 .
[15] B. Øksendal. Stochastic Differential Equations , 1985 .
[16] A. Obukhov. Some specific features of atmospheric turbulence , 1962 .
[17] She,et al. Quantized energy cascade and log-Poisson statistics in fully developed turbulence. , 1995, Physical review letters.
[18] P. Spreij. Probability and Measure , 1996 .
[19] M. Wilczek. Statistical and numerical investigations of fluid turbulence , 2011 .
[20] L. Onsager,et al. Statistical hydrodynamics , 1949 .
[21] A. Kolmogorov. Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[22] Tosio Kato. Perturbation theory for linear operators , 1966 .
[23] R. Kraichnan. Turbulent cascade and intermittency growth , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[24] B. Birnir,et al. The Kolmogorov-Obukhov Theory of Turbulence , 2013 .
[25] K. Sreenivasan,et al. Anomalous scaling of low-order structure functions of turbulent velocity , 2004, Journal of Fluid Mechanics.
[26] S. Pope. Turbulent Flows: FUNDAMENTALS , 2000 .
[27] Rabi Bhattacharya,et al. A basic course in probability theory , 2007 .
[28] S. Varadhan. Large Deviations and Applications , 1984 .
[29] R. Kraichnan. On Kolmogorov's inertial-range theories , 1974, Journal of Fluid Mechanics.
[30] O. Barndorff-Nielsen,et al. A parsimonious and universal description of turbulent velocity increments , 2004 .
[31] Ole E. Barndorff-Nielsen,et al. Processes of normal inverse Gaussian type , 1997, Finance Stochastics.
[32] Dubrulle,et al. Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.
[33] Alain Pumir,et al. Turbulence and Stochastic Processes , 2003 .
[34] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[35] G. Prato. An Introduction to Infinite-Dimensional Analysis , 2006 .
[36] O. E. Barndorff-Nielsen,et al. Parametric modelling of turbulence , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[37] M. Nelkin. Resource Letter TF-1: Turbulence in fluids , 1999, chao-dyn/9906023.
[38] O. Barndorff-Nielsen. Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[39] Multifractal dimension of Lagrangian turbulence. , 2006, Physical review letters.
[40] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[42] Z. She,et al. Universal hierarchical symmetry for turbulence and general multi-scale fluctuation systems , 2009 .
[43] Turbulence Without Pressure: Existence of the Invariant Measure , 2002 .
[44] Rudolf Friedrich,et al. On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity , 2011, Journal of Fluid Mechanics.
[45] Succi,et al. Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.