The Kolmogorov–Obukhov Statistical Theory of Turbulence

In 1941 Kolmogorov and Obukhov postulated the existence of a statistical theory of turbulence, which allows the computation of statistical quantities that can be simulated and measured in a turbulent system. These are quantities such as the moments, the structure functions and the probability density functions (PDFs) of the turbulent velocity field. In this paper we will outline how to construct this statistical theory from the stochastic Navier–Stokes equation. The additive noise in the stochastic Navier–Stokes equation is generic noise given by the central limit theorem and the large deviation principle. The multiplicative noise consists of jumps multiplying the velocity, modeling jumps in the velocity gradient. We first estimate the structure functions of turbulence and establish the Kolmogorov–Obukhov 1962 scaling hypothesis with the She–Leveque intermittency corrections. Then we compute the invariant measure of turbulence, writing the stochastic Navier–Stokes equation as an infinite-dimensional Ito process, and solving the linear Kolmogorov–Hopf functional differential equation for the invariant measure. Finally we project the invariant measure onto the PDF. The PDFs turn out to be the normalized inverse Gaussian (NIG) distributions of Barndorff-Nilsen, and compare well with PDFs from simulations and experiments.

[1]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[2]  B. Birnir Turbulence of a unidirectional flow , 2008 .

[3]  She,et al.  Universal scaling laws in fully developed turbulence. , 1994, Physical review letters.

[4]  A. Kolmogorov A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number , 1962, Journal of Fluid Mechanics.

[5]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[6]  L. Evans An Introduction to Stochastic Differential Equations , 2014 .

[7]  Integrability and regularity of 3D Euler and equations for uniformly rotating fluids , 1996 .

[8]  F. Anselmet,et al.  High-order velocity structure functions in turbulent shear flows , 1984, Journal of Fluid Mechanics.

[9]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.

[10]  A. M. Oboukhov Some specific features of atmospheric tubulence , 1962, Journal of Fluid Mechanics.

[11]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Chia-Ch'iao Lin Β. Turbulent Flow , 1960 .

[13]  K. Sreenivasan,et al.  IS THERE SCALING IN HIGH-REYNOLDS-NUMBER TURBULENCE ? , 1998 .

[14]  Rabi Bhattacharya,et al.  Stochastic processes with applications , 1990 .

[15]  B. Øksendal Stochastic Differential Equations , 1985 .

[16]  A. Obukhov Some specific features of atmospheric turbulence , 1962 .

[17]  She,et al.  Quantized energy cascade and log-Poisson statistics in fully developed turbulence. , 1995, Physical review letters.

[18]  P. Spreij Probability and Measure , 1996 .

[19]  M. Wilczek Statistical and numerical investigations of fluid turbulence , 2011 .

[20]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .

[21]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[22]  Tosio Kato Perturbation theory for linear operators , 1966 .

[23]  R. Kraichnan Turbulent cascade and intermittency growth , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  B. Birnir,et al.  The Kolmogorov-Obukhov Theory of Turbulence , 2013 .

[25]  K. Sreenivasan,et al.  Anomalous scaling of low-order structure functions of turbulent velocity , 2004, Journal of Fluid Mechanics.

[26]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[27]  Rabi Bhattacharya,et al.  A basic course in probability theory , 2007 .

[28]  S. Varadhan Large Deviations and Applications , 1984 .

[29]  R. Kraichnan On Kolmogorov's inertial-range theories , 1974, Journal of Fluid Mechanics.

[30]  O. Barndorff-Nielsen,et al.  A parsimonious and universal description of turbulent velocity increments , 2004 .

[31]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[32]  Dubrulle,et al.  Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance. , 1994, Physical review letters.

[33]  Alain Pumir,et al.  Turbulence and Stochastic Processes , 2003 .

[34]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[35]  G. Prato An Introduction to Infinite-Dimensional Analysis , 2006 .

[36]  O. E. Barndorff-Nielsen,et al.  Parametric modelling of turbulence , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[37]  M. Nelkin Resource Letter TF-1: Turbulence in fluids , 1999, chao-dyn/9906023.

[38]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Multifractal dimension of Lagrangian turbulence. , 2006, Physical review letters.

[40]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[41]  Existence, uniqueness and statistical theory of turbulent solutions of the stochastic Navier--Stokes equation, in three dimensions, an overview , 2010 .

[42]  Z. She,et al.  Universal hierarchical symmetry for turbulence and general multi-scale fluctuation systems , 2009 .

[43]  Turbulence Without Pressure: Existence of the Invariant Measure , 2002 .

[44]  Rudolf Friedrich,et al.  On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity , 2011, Journal of Fluid Mechanics.

[45]  Succi,et al.  Extended self-similarity in turbulent flows. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.