A Survey of Different Integer Programming Formulations of the Travelling Salesman Problem

[1]  Robert Carr Separating over Classes of TSP Inequalities Defined by 0 Node-Lifting in Polynominal Time , 1996, IPCO.

[2]  J. F. Benders Partitioning procedures for solving mixed-variables programming problems , 1962 .

[3]  Stephen C. Graves,et al.  Technical Note - An n-Constraint Formulation of the (Time-Dependent) Traveling Salesman Problem , 1980, Oper. Res..

[4]  H. P. Williams,et al.  Representing integral monoids by inequalities , 1997 .

[5]  Ting-Yi Sung,et al.  An analytical comparison of different formulations of the travelling salesman problem , 1991, Math. Program..

[6]  André Langevin,et al.  CLASSIFICATION OF TRAVELING SALESMAN PROBLEM FORMULATIONS , 1988 .

[7]  Maurice Queyranne,et al.  The Time-Dependent Traveling Salesman Problem and Its Application to the Tardiness Problem in One-Machine Scheduling , 1978, Oper. Res..

[8]  Luís Gouveia,et al.  The asymmetric travelling salesman problem: on generalizations of disaggregated Miller-Tucker-Zemlin constraints , 2001, Discret. Appl. Math..

[9]  Tiru S. Arthanari,et al.  An Alternate Formulation of the Symmetric Traveling Salesman Problem and Its Properties , 2000, Discret. Appl. Math..

[10]  S. Voß,et al.  A classification of formulations for the (time-dependent) traveling salesman problem , 1995 .

[11]  Hanif D. Sherali,et al.  On Tightening the Relaxations of Miller-Tucker-Zemlin Formulations for Asymmetric Traveling Salesman Problems , 2002, Oper. Res..

[12]  H. P. Williams Fourier's Method of Linear Programming and its Dual , 1986 .

[13]  A. Claus A new formulation for the travelling salesman problem , 1984 .

[14]  R. A. Zemlin,et al.  Integer Programming Formulation of Traveling Salesman Problems , 1960, JACM.