Quasi-Neutral Limit of the Euler–Poisson and Euler–Monge–Ampère Systems

ABSTRACT This paper studies the pressureless Euler–Poisson system and its fully nonlinear counterpart, the Euler–Monge–Ampère system, where the fully nonlinear Monge–Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of both systems to the Euler incompressible equations is proved.

[1]  Dario Cordero-Erausquin Sur le transport de mesures périodiques , 1999 .

[2]  S. Schochet,et al.  The Incompressible Limit of the Non-Isentropic Euler Equations , 2001 .

[3]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[4]  L. Caffarelli Interior $W^{2,p}$ estimates for solutions of the Monge-Ampère equation , 1990 .

[5]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[6]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[7]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[8]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[9]  Two-stream instabilities in plasmas , 2000 .

[10]  A Geometric approximation to the euler equations: the Vlasov–Monge–Ampère system , 2004, math/0504135.

[11]  E. Grenier,et al.  Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .

[12]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[13]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[14]  J. Chemin,et al.  Fluides parfaits incompressibles , 2018, Astérisque.

[15]  P. Ungar,et al.  Motion under a strong constraining force , 1957 .

[16]  D. Ebin The motion of slightly compressible fluids viewed as a motion with strong constraining force , 1977 .

[17]  Yan Guo,et al.  Smooth Irrotational Flows in the Large to the Euler–Poisson System in R3+1 , 1998 .

[18]  B. Perthame Non-existence of global solutions to Euler-Poisson equations for repulsive forces , 1990 .

[19]  Yann Brenier,et al.  Hydrodynamic Structure of the Augmented Born-Infeld Equations , 2004 .

[20]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[21]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[22]  E. Grenier Pseudo-differential energy estimates of singular perturbations , 1997 .

[23]  E. Grenier Oscillatory perturbations of the Navier Stokes equations , 1997 .

[24]  P. Gérard,et al.  Opérateurs pseudo-différentiels et théorème de Nash-Moser , 1991 .

[25]  Shu Wang,et al.  Quasineutral Limit of Euler–Poisson System with and without Viscosity , 2005 .

[26]  Y. Brenier Derivation of the Euler Equations¶from a Caricature of Coulomb Interaction , 2000 .