Hybrid analog-digital design microelectromechanical systems spectral processor for simultaneous gain slope and channel equalization controls

To the best of our knowledge, this paper demonstrates the first hybrid analog-digital design fiber-optic spectrum processor that can simultaneously provide spectrum gain slope adjustment as well as independent channel equalization attenuation controls.

[1]  J. A. Walker,et al.  Dynamic spectral power equalization using micro-opto-mechanics , 1998, IEEE Photonics Technology Letters.

[2]  M. Mughal,et al.  Broadband optical equalizer using fault tolerant digital micromirrors. , 2003, Optics express.

[3]  Namkyoo Park,et al.  Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters , 1998 .

[4]  Dmitri Abakoumov,et al.  Low-loss polarisation-independent dynamic gain-equalisation filter , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[5]  M. Parker,et al.  Dynamic holographic spectral equalization for WDM , 1997, IEEE Photonics Technology Letters.

[6]  F. Horst,et al.  Adaptive gain equalizer in high-index-contrast SiON technology , 2000, IEEE Photonics Technology Letters.

[7]  S.A. Khan,et al.  Wavelength-tunable variable fiber-optic attenuator using liquid-Crystal-mirror hybrid controls , 2005, IEEE Photonics Technology Letters.

[8]  T. Imura,et al.  Variable gain equalizer using magneto-optics , 2002, Optical Fiber Communication Conference and Exhibit.

[9]  Motoki Kakui,et al.  Wavelength Dependent Gain Dynamics in Erbium-Doped Fiber Amplifiers for Multiwavelength Optical Networks , 1999 .

[10]  J.A. Walker,et al.  Micromechanical gain slope compensator for spectrally linear optical power equalization , 2000, IEEE Photonics Technology Letters.

[11]  Namkyoo Park,et al.  Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters , 1998, IEEE Photonics Technology Letters.

[12]  G. Kirkos,et al.  MEMS tilt-mirror spatial light modulator for a dynamic spectral equalizer , 2004, Journal of Microelectromechanical Systems.

[13]  N.A. Riza,et al.  Hybrid analog-digital MEMS fiber-optic variable attenuator , 2005, IEEE Photonics Technology Letters.

[14]  Toshiki Tanaka,et al.  Active Gain Slope Compensation in Large-Capacity, Long-Haul WDM Transmission System , 1999 .

[15]  H. Toba,et al.  Tunable gain equalization using a Mach-Zehnder optical filter in multistage fiber amplifiers , 1991, IEEE Photonics Technology Letters.

[16]  Nabeel A. Riza,et al.  Low-loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems , 2004, SPIE Optics + Photonics.

[17]  Robert G. Lindquist,et al.  Liquid crystals in bulk optics-based DWDM optical switches and spectral equalizers , 2001, LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242).

[18]  Masayuki Nishimura,et al.  Variable attenuation slope compensator (VASC) using silica-based planar lightwave circuit technology for active gain slope control in EDFAs , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[19]  N A Riza,et al.  Digitally controlled fault-tolerant multiwavelength programmable fiber-optic attenuator using a two-dimensional digital micromirror device. , 1999, Optics letters.

[20]  S. Chandrasekhar,et al.  An automatic 40-wavelength channelized equalizer , 2000, IEEE Photonics Technology Letters.

[22]  Byoung Yoon Kim,et al.  Dynamic erbium-doped fiber amplifier based on active gain flattening with fiber acoustooptic tunable filters , 1999 .