Active and Agile Environmental and Biological sensing are becoming obligatory to generate prompt warnings for the troops and law enforcements conducting missions in hostile environments. The traditional static sensing mesh networks which provide a coarse-grained (far-field) measurement of the environmental conditions like air quality, radiation , CO2, etc … would not serve the dynamic and localized changes in the environment, which requires a fine-grained (near-field) sensing solutions. Further, sensing the biological conditions of (healthy and injured) personnel in a contaminated environment and providing a personalized analysis of the life-threatening conditions in real-time would greatly aid the success of the mission. In this vein, under SATE and YATE programs, the research team at AFRL Tec^Edge Discovery labs had demonstrated the feasibility of developing Smartphone applications , that employ a suite of external environmental and biological sensors, which provide fine-grained and customized sensing in real-time fashion. In its current state, these smartphone applications leverage a custom designed modular standalone embedded platform (with external sensors) that can be integrated seamlessly with Smartphones for sensing and further provides connectivity to a back-end data architecture for archiving, analysis and dissemination of real-time alerts. Additionally, the developed smartphone applications have been successfully tested in the field with varied environmental sensors to sense humidity, CO2/CO, wind, etc…, ; and with varied biological sensors to sense body temperature and pulse with apt real-time analysis
[1]
Robert L. Williams,et al.
Virtual GEOINT Center: C2ISR through an avatar's eyes
,
2013,
Defense, Security, and Sensing.
[2]
Sanjay Boddhu,et al.
Analyst Performance Measures. Volume 1: Persistent Surveillance Data Processing, Storage and Retrieval
,
2011
.
[3]
Robert L. Williams,et al.
A collaborative smartphone sensing platform for detecting and tracking hostile drones
,
2013,
Defense, Security, and Sensing.
[4]
Robert L. Williams,et al.
Context-aware event detection smartphone application for first responders
,
2013,
Defense, Security, and Sensing.
[5]
Robert L. Williams,et al.
Increasing situational awareness using smartphones
,
2012,
Defense + Commercial Sensing.
[6]
Sanjay Boddhu,et al.
Analyst Performance Measures. Volume 2: Information Quality Tools for Persistent Surveillance Data Sets
,
2011
.