Thermal shock behaviour of ceramics and ceramic composites

AbstractTremendous efforts have been devoted to the studies of ceramic materials under transient thermal conditions over the past four decades. Such studies are becoming increasingly more important as advanced ceramic materials are demanded for applications at higher temperatures and more severe transient thermal conditions. In this paper, the theoretical and experimental studies on the thermal shock behaviour of monolithic ceramics and ceramic composites are reviewed; a survey of the experimental techniques that have been developed for characterising thermal shock damage is also included. It is shown that such studies for the monolithic ceramics have been extensive. The theoretical analyses are based primarily on the behaviour of monolithic ceramics and have been successfully applied to explain experimental phenomena and predict the thermal shock behaviour of monolithic ceramics. However, similar studies of the thermal shock resistance of ceramic composites, especially continuous fibre reinforced composi...

[1]  Anthony G. Evans,et al.  Quantitative Studies of Thermal Shock in Ceramics Based on a Novel Test Technique , 1981 .

[2]  P. J. Lamicq,et al.  SiC/SiC composite ceramics , 1986 .

[3]  T. Chou,et al.  Three-Dimensional Transient Interlaminar Thermal Stresses in Angle-Ply Composites , 1989 .

[4]  R. Bradt,et al.  Thermal‐Shock Damage in SiC , 1973 .

[5]  D. Lewis Comparison of Critical ΔTc Values in Thermal Shock with the R Parameter , 1980 .

[6]  W. B. Crandall,et al.  THERMAL SHOCK ANALYSIS OF SPHERICAL SHAPES , 1955 .

[7]  A. Evans,et al.  Fracture Mechanics of Ceramics , 1986 .

[8]  W. Kingery,et al.  Factors Affecting Thermal Stress Resistance of Ceramic Materials , 1955 .

[9]  D. Hasselman Thermal Shock by Radiation Heating , 1963 .

[10]  A. Emery,et al.  A Green’s Function for the Stress-Intensity Factors of Edge Cracks and Its Application to Thermal Stresses , 1969 .

[11]  G. Grünberg Über den in einer isotropen Kugel durch ungleichförmige Erwärmung erregten Spannungszustand , 1926 .

[12]  D. Hasselman Theory of Thermal Shock Resistance of Semitransparent Ceramics Under Radiation Heating , 1966 .

[13]  M. Swain R‐Curve Behavior and Thermal Shock Resistance of Ceramics , 1990 .

[14]  S. Manson,et al.  THEORY OF THERMAL SHOCK RESISTANCE OF BRITTLE MATERIALS BASED ON WEIBULL'S STATISTICAL THEORY OF STRENGTH , 1955 .

[15]  K. K. Strelov,et al.  The significance of non-elastic deformation in the fracture of heterogeneous ceramic materials , 1978 .

[16]  D. Hasselman,et al.  Thermal Stress Fracture of Brittle Ceramics by Conductive Heat Transfer in a Liquid Metal Quenching Medium , 1986 .

[17]  D. Hasselman,et al.  Thermal‐Stress Fracture of a Thermomechanically Strengthened Aluminosilicate Ceramic , 1972 .

[18]  H. Homma,et al.  Effect of cooling configuration on thermal shock fracture toughness of SiC , 1991 .

[19]  H. Bahr,et al.  Heuristic approach to thermal shock damage due to single and multiple crack growth , 1986 .

[20]  F. Kreith,et al.  Principles of heat transfer , 1962 .

[21]  D. Hasselman Approximate Theory of Thermal Stress Resistance of Brittle Ceramics Involving Creep , 1967 .

[22]  Jl Yuen,et al.  Thermal Shock and Thermal Fatigue Testing , 1991 .

[23]  Hong-lim Lee,et al.  Effect of Crystallites on Thermal Shock Resistance of Cordierite Glass‐Ceramics , 1984 .

[24]  M. Bannister,et al.  Thermal shock of a titanium di-boride based composite , 1990 .

[25]  M. Swain,et al.  Thermal Shock Behavior of Duplex Ceramics , 1991 .

[26]  T. Chou,et al.  Thermal shock resistance of laminated ceramic matrix composites , 1991 .

[27]  M. Swain Quasi-brittle behaviour of ceramics and its relevance for thermal shock , 1991 .

[28]  C. Zener Elasticity and anelasticity of metals , 1948 .

[29]  P. Becker Transient Thermal Stress Behavior in ZrO2‐Toughened Al2O3 , 1981 .

[30]  D. Hasselman,et al.  Effect of bath and specimen temperature on the thermal stress resistance of brittle ceramics subjected to thermal quenching , 1981 .

[31]  Z. Kato,et al.  Development of Aluminum Titanate‐Mullite Composite Having High Thermal Shock Resistance , 1986 .

[32]  G. Schneider Thermal shock criteria for ceramics , 1991 .

[33]  J. P. Berry Some kinetic considerations of the Griffith criterion for fracture—I: Equations of motion at constant force , 1960 .

[34]  W. R. Buessem,et al.  Thermal Shock Testing , 1955 .

[35]  John P. Gyekenyesi,et al.  Thermal shock of fiber reinforced ceramic matrix composites , 2008 .

[36]  T. Gupta Strength Degradation and Crack Propagation in Thermally Shocked Al2O3 , 1972 .

[37]  P. Becher Effect of Water Bath Temperature on the Thermal Shock of Al2O3 , 1981 .

[38]  G. Schneider,et al.  Thermal Shock Testing of Ceramics—A New Testing Method , 1991 .

[39]  H.-J. Weiss,et al.  Thermal-shock crack patterns explained by single and multiple crack propagation , 1986 .

[40]  P. Becher,et al.  Thermal shock behavior of an alumina-SiC whisker composite , 1987 .

[41]  J. C. Jaeger LI. On thermal stresses in circular cylinders , 1945 .

[42]  R. E. Tressler,et al.  High temperature mechanical behavior of a chemically vapor deposited beta silicon carbide , 1992 .

[43]  E. A. Charles,et al.  Structural Integrity in Severe Thermal Environments , 1977 .

[44]  K. Anzai,et al.  Thermal shock resistance of silicon nitride , 1977 .

[45]  E. Case,et al.  Cyclic thermal shock in SiC-whisker-reinforced alumina composite , 1989 .

[46]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[47]  J. L. Zeman,et al.  Topics in Applied Continuum Mechanics , 1974 .

[48]  H. Awaji,et al.  Evaluation of the thermal shock fracture toughness of reactor graphites by arc discharge heating , 1978 .

[49]  J. B. Walsh The effect of cracks on the compressibility of rock , 1965 .

[50]  E. M. Simons,et al.  Effect of Shape on Thermal Fracture , 1955 .

[51]  H. Bahr,et al.  Modelling and measuring of the thermal shock behaviour of ceramics , 1993 .

[52]  G. C. Wei,et al.  Hot-gas-jet method and apparatus for thermal-shock testing , 1989 .

[53]  R. L. Rolf,et al.  Reliability of brittle materials in thermal shock , 1986 .

[54]  G. Schneider,et al.  Thermal shock and thermal fatigue behavior of advanced ceramics , 1993 .

[55]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[56]  H. Tomaszewski Influence of microstructure on the thermomechanical properties of alumina ceramics , 1992 .

[57]  M. Linzer,et al.  Thermal fracture studies in ceramic systems using an acoustic emission technique , 1975 .

[58]  Jacques Lamon,et al.  Thermal Stress Failure of Ceramics under Repeated Rapid Heatings , 1991 .

[59]  T. Kishi,et al.  Thermal shock resistance of SiC fibrerein-forced borosilicate glass and lithium aluminosilicate matrix composites , 1993 .

[60]  H. Bahr,et al.  Crack propagation and thermal shock damage in graphite disks heated by moving electron beam , 1986 .

[61]  Tsugio Sato,et al.  Thermal shock fracture behaviour of ZrO2 based ceramics , 1989 .

[62]  H. Bargmann Dynamic Thermal Shock Resistance , 1974 .

[63]  D. Hasselman,et al.  Unified Theory of Thermal Shock Fracture Initiation and Crack Propagation in Brittle Ceramics , 1969 .

[64]  W. Kingery,et al.  Effect of Porosity on Thermal Stress Fracture , 1955 .

[65]  D. Hasselman,et al.  Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock , 1963 .