Queues : A Course in Queueing Theory

The Exponential Distribution and the Poisson Process.- Introduction to Renewal Theory.- Introduction to Markov Chains.- From Single Server Queues to M/G/1.- Priorities and Scheduling in M/G/1.- M/G/1 Using Markov Chains and LSTs.- The G/M/1 Queueing System.- Continuous-time Markov Chains and Memoryless Queues.- Open Networks of Exponential Queues.- Closed Networks of Exponential Queues.- Insensitivity and Product-form Queueing Models.- Two-dimensional Markov Processes and their Applications to Memoryless Queues.

[1]  Uri Yechiali,et al.  The conditional residual service time in the M/G/1 queue , 1979 .

[2]  Refael Hassin,et al.  To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems , 2002 .

[3]  J. Kingman Two Similar Queues in Parallel , 1961 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[5]  James R. Jackson,et al.  Jobshop-Like Queueing Systems , 2004, Manag. Sci..

[6]  Alan Cobham,et al.  Priority Assignment in Waiting Line Problems , 1954, Oper. Res..

[7]  Moshe Haviv,et al.  Computational schemes for two exponential servers where the first has a finite buffer , 2011, RAIRO Oper. Res..

[8]  I. J. B. F. Adan,et al.  A compensation approach for two-dimensional Markov processes , 1993, Advances in Applied Probability.

[9]  Eitan Altman,et al.  Optimal Routing Among ⋅/M/1 Queues with Partial Information , 2004 .

[10]  Antonis Economou,et al.  Equilibrium customer strategies in a single server Markovian queue with setup times , 2007, Queueing Syst. Theory Appl..

[11]  Ivo J. B. F. Adan,et al.  Matrix-geometric analysis of the shortest queue problem with threshold jockeying , 1993, Oper. Res. Lett..

[12]  J. Kingman On Queues in Heavy Traffic , 1962 .

[13]  John G. Kemeny,et al.  Finite Markov chains , 1960 .

[14]  P BuzenJeffrey Computational algorithms for closed queueing networks with exponential servers , 1973 .

[15]  Moshe Haviv,et al.  Waiting times in queues with relative priorities , 2007, Oper. Res. Lett..

[16]  E. Seneta Non-negative Matrices and Markov Chains , 2008 .

[17]  K. Mani Chandy,et al.  Open, Closed, and Mixed Networks of Queues with Different Classes of Customers , 1975, JACM.

[18]  Moshe Haviv Two sufficient properties for the insensitivity of a class of queueing models , 1991 .

[19]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[20]  Guy Latouche,et al.  A general class of Markov processes with explicit matrix-geometric solutions , 1986 .

[21]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[22]  Ciro D'Apice,et al.  Queueing Theory , 2003, Operations Research.

[23]  Moshe Haviv,et al.  The age of the arrival process in the G/M/1 and M/G/1 queues , 2011, Math. Methods Oper. Res..

[24]  J. F. C. Kingman The effect of queue discipline on waiting time variance , 1962 .

[25]  P. Moran,et al.  Reversibility and Stochastic Networks , 1980 .

[26]  Demetrios Fakinos,et al.  Technical Note - The Expected Remaining Service Time in a Single Server Queue , 1982, Oper. Res..

[27]  Jeffrey P. Buzen,et al.  Computational algorithms for closed queueing networks with exponential servers , 1973, Commun. ACM.

[28]  K. Meyer The Output of a Queueing System , 1981 .

[29]  P. Burke The Output of a Queuing System , 1956 .

[30]  Yoav Kerner The Conditional Distribution of the Residual Service Time in the M n /G/1 Queue , 2008 .

[31]  Eric V. Denardo,et al.  Dynamic Programming: Models and Applications , 2003 .

[32]  Moshe Haviv,et al.  Conditional Ages and Residual Service Times in the M/G/1 Queue , 2009 .