Portfolio selection in multidimensional general and partial moment space

This paper develops a general approach for the single period portfolio optimization problem in a multidimensional general and partial moment space. A shortage function is defined that looks for possible increases in odd moments and decreases in even moments. A main result is that this shortage function ensures sufficient conditions for global optimality. It also forms a natural basis for developing tests on the influence of additional moments. Furthermore, a link is made with an approximation of an arbitrary order of a general indirect utility function. This non-parametric efficiency measurement framework permits to differentiate mainly between portfolio efficiency and allocative efficiency. Finally, information can, in principle, be inferred about the revealed risk aversion, prudence, temperance and other higher-order risk characteristics of investors.

[1]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[2]  M. Rubinstein. The Fundamental Theorem of Parameter-Preference Security Valuation , 1973, Journal of Financial and Quantitative Analysis.

[3]  Campbell R. Harvey,et al.  Conditional Skewness in Asset Pricing Tests , 1999 .

[4]  Richard Cornes,et al.  Duality and modern economics , 1993 .

[5]  Yanqin Fan,et al.  On goodness-of-fit tests for weakly dependent processes using kernel method , 1999 .

[6]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[7]  Tsong-Yue Lai,et al.  Co-Kurtosis and Capital Asset Pricing , 1997 .

[8]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[9]  Ramesh K. S. Rao,et al.  Asset Pricing in a Generalized Mean-Lower Partial Moment Framework: Theory and Evidence , 1989, Journal of Financial and Quantitative Analysis.

[10]  H. White,et al.  On More Robust Estimation of Skewness and Kurtosis: Simulation and Application to the S&P500 Index , 2003 .

[11]  Miles S. Kimball Precautionary Saving in the Small and in the Large , 1989 .

[12]  Bertrand Maillet,et al.  Multi-moment Asset Allocation and Pricing Models , 2006 .

[13]  Bernd Scherer,et al.  Introduction to modern portfolio optimization with NUOPT and S-PLUS , 2005 .

[14]  Otto Loistl The Erroneous Approximation of Expected Utility by Means of a Taylor's Series Expansion: Analytic and Computational Results , 1976 .

[15]  Takashi Okamoto,et al.  Global optimization using a synchronization of multiple search Points autonomously driven by a chaotic dynamic model , 2008, J. Glob. Optim..

[16]  W. Briec,et al.  Single-Period Markowitz Portfolio Selection, Performance Gauging, and Duality: A Variation on the Luenberger Shortage Function , 2002 .

[17]  J. Caballe,et al.  Mixed Risk Aversion , 1995 .

[18]  Rolf Färe,et al.  Nonparametric tests of regularity, Farrell efficiency, and goodness-of-fit☆ , 1995 .

[19]  Robert C. Merton,et al.  Samuelson, Paul A. , 2010 .

[20]  Stephen A. Ross,et al.  A Test of the Efficiency of a Given Portfolio , 1989 .

[21]  T. Mills Modelling Skewness and Kurtosis in the London Stock Exchange Ft‐Se Index Return Distributions , 1995 .

[22]  D. Luenberger Benefit functions and duality , 1992 .

[23]  Hassan Tehranian,et al.  Empirical Studies in Portfolio Performance Using Higher Degrees of Stochastic Dominance , 1980 .

[24]  R. R. Russell,et al.  Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence , 2002 .

[25]  Hiroshi Konno,et al.  A mean-absolute deviation-skewness portfolio optimization model , 1993, Ann. Oper. Res..

[26]  C. Gouriéroux,et al.  The econometrics of efficient portfolios , 2005 .

[27]  Qi Li,et al.  Nonparametric testing of closeness between two unknown distribution functions , 2009 .

[28]  Wlodzimierz Ogryczak,et al.  On consistency of stochastic dominance and mean–semideviation models , 2001, Math. Program..

[29]  V. Bawa OPTIMAL, RULES FOR ORDERING UNCERTAIN PROSPECTS+ , 1975 .

[30]  R. Flôres,et al.  Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice , 2004 .

[31]  D. M. Holthausen,et al.  A Risk-Return Model with Risk and Return Measured as Deviations from a Target Return , 1981 .

[32]  M. Ma,et al.  FOUNDATIONS OF PORTFOLIO THEORY , 1990 .

[33]  P. Fishburn Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .

[34]  Patrick L. Brockett,et al.  A class of utility functions containing all the common utility functions , 1987 .

[35]  Paul D. Thistle,et al.  Negative Moments, Risk Aversion, and Stochastic Dominance , 1993, Journal of Financial and Quantitative Analysis.

[36]  R. Flôres,et al.  Incorporating skewness and kurtosis in portfolio optimization: A multidimensional efficient set , 2003 .

[37]  Louis Eeckhoudt,et al.  Putting risk in its proper place , 2006 .

[38]  Tsong-Yue Lai Portfolio selection with skewness: A multiple-objective approach , 1991 .

[39]  John C. Liechty,et al.  Portfolio selection with higher moments , 2004 .

[40]  L. A. Balzer Investment risk: A unified approach to upside and downside returns , 2001 .

[41]  P. Jana,et al.  Multi-objective Mean-variance-skewness model for Portfolio Optimization , 2007 .

[42]  Louis Eeckhoudt,et al.  A Good Sign for Multivariate Risk Taking , 2006, Manag. Sci..

[43]  Louis Eeckhoudt,et al.  Comparative Mixed Risk Aversion: Definition and Application to Self-Protection and Willingness to Pay , 2003 .

[44]  Patrick L. Brockett,et al.  Risk, Return, Skewness and Preference , 1992 .

[45]  X. Henry Wang,et al.  Increasing outer risk , 2005 .

[46]  Harry M. Markowitz,et al.  Foundations of Portfolio Theory , 1991 .

[47]  A. Mas-Colell,et al.  Microeconomic Theory , 1995 .

[48]  Stephen E. Satchell,et al.  Advances in Portfolio Construction and Implementation , 2011 .

[49]  Leâ Opold Simar,et al.  A general methodology for bootstrapping in non-parametric frontier models , 2000 .

[50]  Sebastián Lozano,et al.  TSD-consistent performance assessment of mutual funds , 2008, J. Oper. Res. Soc..

[51]  Qi Li Nonparametric testing of closeness between two unknown distribution functions , 1996 .

[52]  D. E. Farrar,et al.  The investment decision under uncertainty , 1962 .

[53]  Philip A. Horvath,et al.  On The Direction of Preference for Moments of Higher Order Than The Variance , 1980 .

[54]  R. Litzenberger,et al.  SKEWNESS PREFERENCE AND THE VALUATION OF RISK ASSETS , 1976 .

[55]  Faruk Gul A Theory of Disappointment Aversion , 1991 .

[56]  Hal R. Varian,et al.  GOODNESS-OF-FIT IN OPTIMIZING MODELS , 1989 .

[57]  P. Samuelson General Proof that Diversification Pays , 1967, Journal of Financial and Quantitative Analysis.

[58]  Martin R. Holmer,et al.  Dynamic models for fixed-income portfolio management under uncertainty , 1998 .

[59]  Joseph H. Golec,et al.  Bettors Love Skewness, Not Risk, at the Horse Track , 1998, Journal of Political Economy.

[60]  D. E. Farrar THE INVESTMENT DECISION UNDER UNCERTAINTY: PORTFOLIO SELECTION* , 1962 .

[61]  W. Sharpe Expected Utility Asset Allocation , 2007 .

[62]  John Liechty,et al.  Portfolio selection with higher moments , 2004 .

[63]  Thangaraj Draviam,et al.  Dynamic portfolio selection with fixed and/or proportional transaction costs using non-singular stochastic optimal control theory , 2007 .

[64]  M. Rockinger,et al.  Optimal Portfolio Allocation Under Higher Moments , 2004 .

[65]  Kristiaan Kerstens,et al.  Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach , 2007, Manag. Sci..

[66]  Robert F. Dittmar Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns , 2002 .

[67]  M. Rockinger,et al.  Optimal Portfolio Allocation Under Higher Moments , 2004 .

[68]  Bertrand Maillet,et al.  Efficient Frontier for Robust Higher-order Moment Portfolio Selection , 2008 .

[69]  Mark Kritzman,et al.  Mean-Variance Versus Full-Scale Optimization: In and Out of Sample , 2006 .

[70]  Kristiaan Kerstens,et al.  Infeasibility and Directional Distance Functions with Application to the Determinateness of the Luenberger Productivity Indicator , 2009 .

[71]  David N. Nawrocki,et al.  The Critical Line Algorithm for UPM-LPM Parametric General Asset Allocation Problem with Allocation Boundaries and Linear Constraints , 2007 .

[72]  P. Samuelson The Fundamental Approximation Theorem of Portfolio Analysis in terms of Means, Variances and Higher Moments , 1970 .

[73]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[74]  Walter Hlawitschka,et al.  The Empirical Nature of Taylor-Series Approximations to Expected Utility , 1994 .

[75]  M. E. Ellis Mean–Variance versus Full-Scale Optimisation: In and Out of Sample , 2007 .

[76]  Timo Kuosmanen,et al.  Efficient Diversification According to Stochastic Dominance Criteria , 2004, Manag. Sci..

[77]  P. W. Wilson,et al.  TESTING RESTRICTIONS IN NONPARAMETRIC EFFICIENCY MODELS , 2001 .

[78]  Hrishikesh D. Vinod,et al.  Ranking mutual funds using unconventional utility theory and stochastic dominance , 2004 .

[79]  H. Levy Stochastic Dominance: Investment Decision Making under Uncertainty , 2010 .

[80]  Hiroshi Konno,et al.  Third Degree Stochastic Dominance and Mean-Risk Analysis , 2000 .

[81]  Walter Briec,et al.  An Extended Fare-Lovell Technical Efficiency Measure , 2000 .

[82]  A. Tversky,et al.  Prospect theory: analysis of decision under risk , 1979 .

[83]  Hal R. Varian,et al.  Nonparametric Tests of Models of Investor Behavior , 1983, Journal of Financial and Quantitative Analysis.

[84]  Raj Aggarwal,et al.  Skewness And Kurtosis In Japanese Equity Returns: Empirical Evidence , 1989 .

[85]  Dietmar Maringer,et al.  Global optimization of higher order moments in portfolio selection , 2009, J. Glob. Optim..