Assembly and Electrical Characterization of Multiwall Carbon Nanotube Interconnects

We demonstrate a general method to assemble and contact arrays of individual multiwall carbon nanotube (MWCNT) interconnects between electrodes in one batch. We have also collected about 200 resistance measurements to compare four different contact metals: Al, Au, Ti, and Pd. We have also measured the radio frequency characteristics of the assembled MWCNTs up to 15 GHz. High-resolution transmission electron microscopy analysis has been used to correlate the electrical and physical characteristics of the MWCNTs.

[1]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[2]  M. Dresselhaus,et al.  Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes. , 2005, Physical review letters.

[3]  H. L. Stormer,et al.  Four-terminal resistance of a ballistic quantum wire , 2001, Nature.

[4]  Gang Chen,et al.  High-bias-induced structure and the corresponding electronic property changes in carbon nanotubes , 2005 .

[5]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[6]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[7]  Hyunhyub Ko,et al.  Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. , 2006, Nano letters.

[8]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[9]  Kyong-Hoon Lee,et al.  Toward large-scale integration of carbon nanotubes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[10]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[11]  H. Wong,et al.  Measurability Issues in the Radio-Frequency Characterization of Carbon Nanotubes , 2006, 2006 Sixth IEEE Conference on Nanotechnology.

[12]  Shinobu Fujita,et al.  A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. , 2008, Nano letters.

[13]  Qian Wang,et al.  Electrical contacts to carbon nanotubes down to 1nm in diameter , 2005 .

[14]  John J. Plombon,et al.  High-frequency electrical properties of individual and bundled carbon nanotubes , 2007 .

[15]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[16]  Hyun-Woo Lee,et al.  Current-carrying capacity of double-wall carbon nanotubes , 2007 .

[17]  H. Dai,et al.  Quantum interference and ballistic transmission in nanotube electron waveguides. , 2001, Physical review letters.

[18]  Horst Hahn,et al.  Ultra-large-scale directed assembly of single-walled carbon nanotube devices. , 2007, Nano letters.

[19]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[20]  Franz Kreupl,et al.  Carbon nanotubes in interconnect applications , 2002 .

[21]  George C Schatz,et al.  Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[23]  Ahmed Busnaina,et al.  Three-dimensional assembly of single-walled carbon nanotube interconnects using dielectrophoresis , 2007, Nanotechnology.

[24]  Kyeongjae Cho,et al.  Ab initio study of Schottky barriers at metal-nanotube contacts , 2004 .

[25]  Naoki Yokoyama,et al.  Carbon nanotube via interconnect technologies: size‐classified catalyst nanoparticles and low‐resistance ohmic contact formation , 2006 .

[26]  J. Miao,et al.  Aligned carbon nanotubes for through-wafer interconnects , 2007 .

[27]  Cheng Qian,et al.  Microwave impedance spectroscopy of dense carbon nanotube bundles. , 2008, Nano letters.

[28]  John A Rogers,et al.  Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. , 2007, Nano letters.

[29]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[30]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[31]  G. Cuniberti,et al.  Contact dependence of carrier injection in carbon nanotubes: an ab initio study. , 2005, Physical review letters.

[32]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[33]  T. Kuan,et al.  Alteration of Cu conductivity in the size effect regime , 2004 .

[34]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.