Crystal Structure of Penicillin-Binding Protein 3 (PBP3) from Escherichia coli

In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP357–577) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module of unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP388–165), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP357–577 dimerization.

[1]  R. Brasseur,et al.  PBP5 Complementation of a PBP3 Deficiency in Enterococcus hirae , 2006, Journal of bacteriology.

[2]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[3]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[4]  Chi‐Huey Wong,et al.  Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli , 2009, Proceedings of the National Academy of Sciences.

[5]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[6]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[7]  W. Margolin,et al.  FtsZ and the division of prokaryotic cells and organelles , 2005, Nature Reviews Molecular Cell Biology.

[8]  K. Young Bacterial shape , 2003, Molecular microbiology.

[9]  K Cowtan,et al.  Combining constraints for electron-density modification. , 1997, Methods in enzymology.

[10]  Daniel Lim,et al.  Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. , 2002, Nature structural biology.

[11]  T. den Blaauwen,et al.  Maturation of the Escherichia coli divisome occurs in two steps , 2005, Molecular microbiology.

[12]  J. Beckwith,et al.  A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region , 2004, Molecular microbiology.

[13]  Kevin Cowtan,et al.  The Buccaneer software for automated model building , 2006 .

[14]  M. Wissel,et al.  Genetic Analysis of the Cell Division Protein FtsI (PBP3): Amino Acid Substitutions That Impair Septal Localization of FtsI and Recruitment of FtsN , 2004, Journal of bacteriology.

[15]  P. Taschner,et al.  An amino acid substitution in penicillin-binding protein 3 creates pointed polar caps in Escherichia coli , 1988, Journal of bacteriology.

[16]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[17]  J. Errington,et al.  Cytokinesis in Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[18]  J M Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[19]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[20]  Ashley M Deacon,et al.  Crystal Structures of Penicillin-binding Protein 2 from Penicillin-susceptible and -resistant Strains of Neisseria gonorrhoeae Reveal an Unexpectedly Subtle Mechanism for Antibiotic Resistance* , 2009, Journal of Biological Chemistry.

[21]  Waldemar Vollmer,et al.  Regulation of peptidoglycan synthesis by outer membrane proteins , 2010, Cell.

[22]  Daniel Lim,et al.  Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus , 2002, Nature Structural Biology.

[23]  S. Alexeeva,et al.  The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. , 2011, Microbiology.

[24]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[25]  G. Nicola,et al.  Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. , 2005, Biochemistry.

[26]  D. Ladant,et al.  Interaction Network among Escherichia coli Membrane Proteins Involved in Cell Division as Revealed by Bacterial Two-Hybrid Analysis , 2005, Journal of bacteriology.

[27]  R. Rappuoli,et al.  GNA33 from Neisseria meningitidis serogroup B encodes a membrane-bound lytic transglycosylase (MltA). , 2002, European journal of biochemistry.

[28]  B. Spratt,et al.  Penicillin-binding proteins and cell shape in E. coli , 1975, Nature.

[29]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[30]  E. Sauvage,et al.  The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin , 2002, Cellular and Molecular Life Sciences CMLS.

[31]  K. Young,et al.  Bacterial shape , 2003 .

[32]  E. Breukink,et al.  The Essential Cell Division Protein FtsN Interacts with the Murein (Peptidoglycan) Synthase PBP1B in Escherichia coli* , 2007, Journal of Biological Chemistry.

[33]  J. Lutkenhaus,et al.  Cloning and characterization of ftsN, an essential cell division gene in Escherichia coli isolated as a multicopy suppressor of ftsA12(Ts) , 1993, Journal of bacteriology.

[34]  E. Obayashi,et al.  Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms. , 2012, Journal of molecular biology.

[35]  O. Dideberg,et al.  X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme , 1996, Nature Structural Biology.

[36]  J. Tame,et al.  Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. , 2006, Biochemistry.

[37]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[38]  T. Romeis,et al.  Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. , 1994, The Journal of biological chemistry.

[39]  Otto Dideberg,et al.  Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. , 2006, FEMS microbiology reviews.

[40]  C. Dahout-Gonzalez,et al.  PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. , 2009, Journal of molecular biology.

[41]  H. Nagasawa,et al.  Determination of the cleavage site involved in C-terminal processing of penicillin-binding protein 3 of Escherichia coli , 1989, Journal of bacteriology.

[42]  J. Ghuysen,et al.  Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs , 1998, Microbiology and Molecular Biology Reviews.

[43]  A. Leslie Molecular data processing , 1992 .

[44]  M. de Pedro,et al.  Peptidoglycan structure and architecture. , 2008, FEMS microbiology reviews.

[45]  C. Davies,et al.  Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis. , 2010, Journal of molecular biology.

[46]  P. D. de Boer,et al.  The trans‐envelope Tol–Pal complex is part of the cell division machinery and required for proper outer‐membrane invagination during cell constriction in E. coli , 2007, Molecular microbiology.

[47]  Jay Painter,et al.  Electronic Reprint Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion Biological Crystallography Optimal Description of a Protein Structure in Terms of Multiple Groups Undergoing Tls Motion , 2005 .

[48]  J. García de la Torre,et al.  Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. , 2000, Biophysical journal.

[49]  Waldemar Vollmer,et al.  Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli , 2006, Molecular microbiology.

[50]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[51]  B. Shoichet,et al.  Crystal structures of penicillin-binding protein 6 from Escherichia coli. , 2009, Journal of the American Chemical Society.

[52]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[53]  David I. Stuart,et al.  Crystal Structures of Penicillin-Binding Protein 3 from Pseudomonas aeruginosa: Comparison of Native and Antibiotic-Bound Forms , 2011, Journal of molecular biology.

[54]  E. Sauvage,et al.  Crystal structure of a complex between the Actinomadura R39 DD-peptidase and a peptidoglycan-mimetic boronate inhibitor: interpretation of a transition state analogue in terms of catalytic mechanism. , 2010, Biochemistry.

[55]  G. Di Lallo,et al.  Use of a two-hybrid assay to study the assembly of a complex multicomponent protein machinery: bacterial septosome differentiation. , 2003, Microbiology.

[56]  N. Strynadka,et al.  Identification of dynamic structural motifs involved in peptidoglycan glycosyltransfer. , 2008, Journal of molecular biology.

[57]  J. Ghuysen,et al.  Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli. , 1994, The Biochemical journal.

[58]  P. D. de Boer,et al.  The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin‐arginine transport pathway , 2003, Molecular microbiology.

[59]  R. Brasseur,et al.  Differential functionalities of amphiphilic peptide segments of the cell‐septation penicillin‐binding protein 3 of Escherichia coli , 2000, Molecular microbiology.

[60]  J. Frère,et al.  Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. , 2007, Journal of molecular biology.

[61]  Paulette Charlier,et al.  The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[62]  V. Shanmugasundaram,et al.  Distinctive attributes of β-lactam target proteins in Acinetobacter baumannii relevant to development of new antibiotics. , 2011, Journal of the American Chemical Society.