Interactive geometry remeshing

We present a novel technique, both flexible and efficient, for interactive remeshing of irregular geometry. First, the original (arbitrary genus) mesh is substituted by a series of 2D maps in parameter space. Using these maps, our algorithm is then able to take advantage of established signal processing and halftoning tools that offer real-time interaction and intricate control. The user can easily combine these maps to create a control map --- a map which controls the sampling density over the surface patch. This map is then sampled at interactive rates allowing the user to easily design a tailored resampling. Once this sampling is complete, a Delaunay triangulation and fast optimization are performed to perfect the final mesh.As a result, our remeshing technique is extremely versatile and general, being able to produce arbitrarily complex meshes with a variety of properties including: uniformity, regularity, semi-regularity, curvature sensitive resampling, and feature preservation. We provide a high level of control over the sampling distribution allowing the user to interactively custom design the mesh based on their requirements thereby increasing their productivity in creating a wide variety of meshes.

[1]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[2]  Jeff Erickson,et al.  Optimally Cutting a Surface into a Disk , 2002, SCG '02.

[3]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[4]  Paul S. Heckbert,et al.  A Pliant Method for Anisotropic Mesh Generation , 1996 .

[5]  Steven J. Owen,et al.  Advancing Front Surface Mesh Generation in Parametric Space Using a Riemannian Surface Definition , 1998, IMR.

[6]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[7]  A. Sheffer Spanning tree seams for reducing parameterization distortion of triangulated surfaces , 2002, Proceedings SMI. Shape Modeling International 2002.

[8]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[9]  Frédéric Hecht,et al.  MESH GRADATION CONTROL , 1998 .

[10]  P. George,et al.  Delaunay mesh generation governed by metric specifications. Part I algorithms , 1997 .

[11]  Jean-Claude Léon,et al.  Static polyhedron simplification using error measurements , 1997, Comput. Aided Des..

[12]  Alain Rassineux,et al.  Surface remeshing by local hermite diffuse interpolation , 2000 .

[13]  Christian Rössl,et al.  Feature Sensitive Sampling for Interactive Remeshing , 2000, VMV.

[14]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[15]  A. Gray Modern Differential Geometry of Curves and Surfaces , 1993 .

[16]  Leif Kobbelt,et al.  Resampling Feature and Blend Regions in Polygonal Meshes for Surface Anti‐Aliasing , 2001, Comput. Graph. Forum.

[17]  D. Levin,et al.  Optimizing 3D triangulations using discrete curvature analysis , 2001 .

[18]  John F. Hughes,et al.  Modeling surfaces of arbitrary topology using manifolds , 1995, SIGGRAPH.

[19]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[20]  Günther Greiner,et al.  Remeshing triangulated surfaces with optimal parameterizations , 2001, Comput. Aided Des..

[21]  Greg Turk,et al.  Fast and memory efficient polygonal simplification , 1998 .

[22]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[23]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[24]  Markus H. Gross,et al.  Spectral processing of point-sampled geometry , 2001, SIGGRAPH.

[25]  Mark S. Shephard,et al.  Surface Meshing Using Vertex Insertion , 1996 .

[26]  Peter Schröder,et al.  Normal meshes , 2000, SIGGRAPH.

[27]  Bruno Lévy,et al.  Constrained texture mapping for polygonal meshes , 2001, SIGGRAPH.

[28]  Robert Ulichney,et al.  Dithering with blue noise , 1988, Proc. IEEE.

[29]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[30]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[31]  Paul-Louis George,et al.  Delaunay triangulation and meshing : application to finite elements , 1998 .

[32]  David P. Dobkin,et al.  MAPS: multiresolution adaptive parameterization of surfaces , 1998, SIGGRAPH.

[33]  Lyuba Alboul,et al.  Polyhedral metrics in surface reconstruction: tight triangulations , 1995 .

[34]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[35]  Dhiraj K. Pradhan,et al.  Consensus With Dual Failure Modes , 1991, IEEE Trans. Parallel Distributed Syst..

[36]  Christian Rössl,et al.  Feature Sensitive Remeshing , 2001, Comput. Graph. Forum.

[37]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[38]  Steven J. Gortler,et al.  Geometry images , 2002, SIGGRAPH.

[39]  R. B. Simpson Anisotropic mesh transformations and optimal error control , 1994 .

[40]  H. Borouchaki,et al.  Geometric surface mesh optimization , 1998 .

[41]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).