A Distributed Algorithm for Finding Hamiltonian Cycles in Random Graphs in O(log n) Time

It is known for some time that a random graph $G(n,p)$ contains w.h.p. a Hamiltonian cycle if $p$ is larger than the critical value $p_{crit}= (\log n + \log \log n + \omega_n)/n$. The determination of a concrete Hamiltonian cycle is even for values much larger than $p_{crit}$ a nontrivial task. In this paper we consider random graphs $G(n,p)$ with $p$ in $\tilde{\Omega}(1/\sqrt{n})$, where $\tilde{\Omega}$ hides poly-logarithmic factors in $n$. For this range of $p$ we present a distributed algorithm ${\cal A}_{HC}$ that finds w.h.p. a Hamiltonian cycle in $O(\log n)$ rounds. The algorithm works in the synchronous model and uses messages of size $O(\log n)$ and $O(\log n)$ memory per node.

[1]  Quentin F. Stout,et al.  Optimal parallel construction of Hamiltonian cycles and spanning trees in random graphs , 1993, SPAA '93.

[2]  Volker Turau,et al.  Scalable Routing for Topic-Based Publish/Subscribe Systems Under Fluctuations , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[3]  Béla Bollobás,et al.  Random Graphs , 1985 .

[4]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[5]  Dahlia Malkhi,et al.  Virtual Ring Routing Trends , 2009, DISC.

[6]  Guy Louchard,et al.  A Distributed Algorithm to Find Hamiltonian Cycles in Random Graphs , 2004, CAAN.

[7]  Alan M. Frieze Parallel Algorithms for Finding Hamilton Cycles in Random Graphs , 1987, Inf. Process. Lett..

[8]  Krzysztof Krzywdzinski,et al.  Distributed algorithms for random graphs , 2015, Theor. Comput. Sci..

[9]  Michel Raynal,et al.  Depth-first traversal and virtual ring construction in distributed systems , 1987 .

[10]  Alan M. Frieze,et al.  An almost linear time algorithm for finding Hamilton cycles in sparse random graphs with minimum degree at least three , 2012, Random Struct. Algorithms.

[11]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[12]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[13]  Eli Shamir,et al.  How many random edges make a graph hamiltonian? , 1983, Comb..

[14]  Reza Fathi,et al.  Fast and Efficient Distributed Computation of Hamiltonian Cycles in Random Graphs , 2018, 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS).

[15]  Alessandro Giua,et al.  Quantized consensus in Hamiltonian graphs , 2011, Autom..

[16]  Guy Louchard,et al.  A distributed algorithm to find Hamiltonian cycles in G(n, p) random graphs , 2005 .

[17]  Andrew Thomason A simple linear expected time algorithm for finding a hamilton path , 1989, Discret. Math..

[18]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[19]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[20]  Béla Bollobás,et al.  The Diameter of Random Graphs , 1981 .

[21]  Robert D. Nowak,et al.  Quantized incremental algorithms for distributed optimization , 2005, IEEE Journal on Selected Areas in Communications.

[22]  Shinichi Honiden,et al.  On agent-friendly aggregation in networks (Short Paper) , 2008 .

[23]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[24]  Joohwan Kim,et al.  Peer-to-peer streaming over dynamic random Hamilton cycles , 2012, 2012 Information Theory and Applications Workshop.

[25]  Volker Turau A distributed algorithm for finding Hamiltonian cycles in random graphs in O(log⁡n) time , 2020, Theor. Comput. Sci..

[26]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[27]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[28]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .