Complex optical index of single wall carbon nanotube films from the near-infrared to the terahertz spectral range.

We retrieve the complex optical index of single-walled carbon nanotube (CNT) films in the 0.6-800 μm spectral range. Results are obtained from a complete set of optical measurements, reflection and transmission, of free-standing CNT films using time domain spectroscopy in the terahertz (THz) and Fourier transform infrared (IR) spectroscopy in the visible-IR. Based on a Drude-Lorentz model, our results reveal a global metallic behavior of the films in the IR, and confirm their high optical index in the THz range.

[1]  Joo-Hiuk Son,et al.  Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes , 2007 .

[2]  Joo-Hiuk Son,et al.  Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region , 2004 .

[3]  F. Hennrich,et al.  Infrared spectroscopic studies on unoriented single-walled carbon nanotube films under hydrostatic pressure , 2009, 0910.0185.

[4]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[5]  'Aron Pekker,et al.  Wide-range optical studies on various single-walled carbon nanotubes: Origin of the low-energy gap , 2011, 1101.4586.

[6]  László Forró,et al.  Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films , 2000 .

[7]  L. Guo,et al.  Low density carbon nanotube forest as an index-matched and near perfect absorption coating , 2011 .

[8]  M. Itkis,et al.  Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes , 2002 .

[9]  L. Vivien,et al.  Optical gain in carbon nanotubes , 2010, 1011.6088.

[10]  J.-L. Pelouard,et al.  Potential of carbon nanotubes films for infrared bolometers , 2011, OPTO.

[11]  C. Thomsen,et al.  Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment , 2010 .

[12]  R. Martel,et al.  Mechanism of the far-infrared absorption of carbon-nanotube films. , 2008, Physical review letters.

[13]  E. J. Mele,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1997 .

[14]  R. Shimano,et al.  Dielectric properties of single-walled carbon nanotubes in the terahertz frequency range , 2007 .

[15]  A. Rinzler,et al.  Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements , 2006 .

[16]  H. Kataura,et al.  Optical Properties of Single-Wall Carbon Nanotubes , 1999 .

[17]  Robert C. Haddon,et al.  Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films , 2006, Science.

[18]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[19]  Baratunde A. Cola,et al.  Highly specular carbon nanotube absorbers , 2010 .

[20]  Liangbing Hu,et al.  Infrared transparent carbon nanotube thin films , 2009 .

[21]  Samuel Graham,et al.  Specific contact resistance at metal/carbon nanotube interfaces , 2009 .

[22]  A. Rinzler,et al.  Far-infrared to visible optical conductivity of single-wall carbon nanotubes , 2001 .

[23]  I H White,et al.  Wideband-tuneable, nanotube mode-locked, fibre laser. , 2008, Nature nanotechnology.

[24]  Annick Loiseau,et al.  Electrical characterization of devices based on carbon nanotube films , 2010 .