Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

Purifying ethylene with flexible zeolites Ethylene is a key feedstock for many chemicals and polymers, but its production requires cryogenic separation from ethane, an energy-consuming step. In theory, pure silica zeolites are well suited to separate olefins from paraffins. Bereciartua et al. synthesized a pure silica zeolite with very small pores, which, if static, would not adsorb either of these hydrocarbons. However, molecular dynamics suggested that the pores should be flexible. Indeed, in competitive adsorption experiments, the zeolite preferentially adsorbed ethylene from a mixed stream of ethylene and ethane. Science, this issue p. 1068 A pure silica zeolite has small, flexible pores that preferentially adsorb ethylene over ethane. The discovery of new materials for separating ethylene from ethane by adsorption, instead of using cryogenic distillation, is a key milestone for molecular separations because of the multiple and widely extended uses of these molecules in industry. This technique has the potential to provide tremendous energy savings when compared with the currently used cryogenic distillation process for ethylene produced through steam cracking. Here we describe the synthesis and structural determination of a flexible pure silica zeolite (ITQ-55). This material can kinetically separate ethylene from ethane with an unprecedented selectivity of ~100, owing to its distinctive pore topology with large heart-shaped cages and framework flexibility. Control of such properties extends the boundaries for applicability of zeolites to challenging separations.

[1]  Alexandre F. P. Ferreira,et al.  Ethane/ethylene separation on a copper benzene-1,3,5-tricarboxylate MOF , 2015 .

[2]  Meng Shi,et al.  High pressure adsorptive separation of ethylene and ethane on Na-ETS-10 , 2011 .

[3]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[4]  S. M. Kuznicki,et al.  Adsorption of ethane and ethylene on modified ETS-10 , 2008 .

[5]  Soon-Haeng Cho,et al.  Adsorption of Light Hydrocarbon Gases on Alkene-Selective Adsorbent , 2002 .

[6]  Mauro Gemmi,et al.  Fast electron diffraction tomography , 2015 .

[7]  Avelino Corma,et al.  Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58 , 2016, Journal of the American Chemical Society.

[8]  Alan L. Myers,et al.  Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites , 2001 .

[9]  Ryan P. Lively,et al.  Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. , 2012, The journal of physical chemistry letters.

[10]  A. Rodrigues,et al.  Light olefins/paraffins separation with 13X zeolite binderless beads , 2014 .

[11]  R. Eldridge,et al.  Olefin/Paraffin Separations by Reactive Absorption: A Review , 1998 .

[12]  David H. Olson,et al.  Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58 , 2004 .

[13]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[14]  F. Kapteijn,et al.  Shape Selectivity in Adsorption on the All-Silica DD3R , 2000 .

[15]  Sven Hovmöller,et al.  Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders , 2015, IUCrJ.

[16]  W. Koros,et al.  Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation , 2012 .

[17]  P. A. Barrett,et al.  ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separations. , 2003, Chemical communications.

[18]  F. Kapteijn,et al.  A diffusion study of small hydrocarbons in DDR zeolites by micro-imaging , 2013 .

[19]  F. Rey,et al.  Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by 19F Nuclear Magnetic Resonance , 2003 .

[20]  N. Hu,et al.  Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation , 2015 .

[21]  Leena Koottungal,et al.  International Survey of Ethylene from Steam Crackers - 2011 , 2010 .

[22]  F. Kapteijn,et al.  Adsorptive separation of light olefin/paraffin mixtures , 2006 .

[23]  Karsten Reuter,et al.  Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions , 2009, 0909.2351.

[24]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[25]  Alexandre F. P. Ferreira,et al.  Development of gas‐phase SMB technology for light olefin/paraffin separations , 2016 .

[26]  D. Sholl,et al.  Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH4 Diffusion in Eight Member Ring Zeolites , 2013 .

[27]  N. Bock,et al.  Extended Lagrangian free energy molecular dynamics. , 2011, The Journal of chemical physics.

[28]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[29]  D. Sholl,et al.  Modeling Diffusion of Linear Hydrocarbons in Silica Zeolite LTA Using Transition Path Sampling , 2015 .

[30]  D. Ruthven,et al.  Adsorptive separation of light olefins from paraffins , 2007 .

[31]  S. Hamad,et al.  Critical Role of Dynamic Flexibility in Ge‐Containing Zeolites: Impact on Diffusion , 2016, Chemistry.

[32]  H. Maghsoudi Comparative study of adsorbents performance in ethylene/ethane separation , 2016, Adsorption.

[33]  Qing Min Wang,et al.  Metallo-organic molecular sieve for gas separation and purification , 2002 .

[34]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[35]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes , 2000 .

[36]  D. Sholl,et al.  Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[39]  D. Ruthven,et al.  Diffusion in nanoporous materials , 2012 .

[40]  U. Kolb,et al.  Structure characterization of nanocrystalline porous materials by tomographic electron diffraction , 2015 .

[41]  D. Sholl,et al.  Improved Hill–Sauer Force Field for Accurate Description of Pores in 8-Ring Zeolites , 2016 .

[42]  Saad A. Al-Bogami,et al.  Crude oil to chemicals: light olefins from crude oil , 2017 .

[43]  J. Caro,et al.  Ethene/ethane and propene/propane separation via the olefin and paraffin selective metal-organic framework adsorbents CPO-27 and ZIF-8. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[44]  D. Farrusseng,et al.  Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. , 2012, Journal of the American Chemical Society.

[45]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[46]  Jordi Rius,et al.  Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites , 2004, Nature.

[47]  R. T. Yang,et al.  Olefin/paraffin separations by adsorption: π‐Complexation vs. kinetic separation , 1998 .

[48]  G. Ciccotti,et al.  Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems , 2001 .

[49]  Sankar Nair,et al.  Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. , 2015, Journal of the American Chemical Society.

[50]  D. Olson,et al.  ITQ-12: A zeolite having temperature dependent adsorption selectivity and potential for propene separation , 2004 .

[51]  U. Kolb,et al.  Automated electron diffraction tomography – a new tool for nano crystal structure analysis , 2011 .

[52]  O. Terasaki,et al.  Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation , 2003, Science.

[53]  S. M. Sadrameli Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review , 2015 .

[54]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[55]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[56]  R. T. Yang,et al.  New sorbents for olefin/paraffin separations by adsorption via π ‐complexation , 1995 .

[57]  A. Corma,et al.  Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. , 2007, Chemical communications.

[58]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[59]  D. Ruthven,et al.  Diffusion of C2H6 and C2H4 in DDR Zeolite , 2012 .

[60]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[61]  M. Mofarahi,et al.  Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A , 2013, Adsorption.

[62]  M. Hartmann,et al.  Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[63]  J. Hedlund,et al.  High-flux MFI membranes , 2002 .

[64]  C. Giacovazzo,et al.  Crystal structure determination and refinement via SIR2014 , 2015 .

[65]  A. Corma,et al.  Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43 , 2011, Science.