The genome assembly and annotation of the many-banded krait, Bungarus multicinctus

Snakes are a vital component of wildlife resources and are widely distributed across the globe. The many-banded krait Bungarus multicinctus is a highly venomous snake found across Southern Asia and central and southern China. Snakes are an ancient reptile group, and their genomes can provide important clues for understanding the evolutionary history of reptiles. Additionally, genomic resources play a crucial role in comprehending the evolution of all species. However, snake genomic resources are still scarce. Here, we present a highly contiguous genome of B. multicinctus with a size of 1.51 Gb. The genome contains a repeat content of 40.15%, with a total length exceeding 620 Mb. Additionally, we annotated a total of 24,869 functional genes. This research is of great significance for comprehending the evolution of B. multicinctus and provides genomic information on the genes involved in venom gland functions.

[1]  Yiming Guo,et al.  Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins , 2022, Acta pharmaceutica Sinica. B.

[2]  Yiwu Zhou,et al.  Forensic identification of a fatal snakebite from Bungarus multicinctus (Chinese krait) by pathological and toxicological findings: a case report , 2022, Forensic Science, Medicine and Pathology.

[3]  Aida Verdes,et al.  Modern venomics—Current insights, novel methods, and future perspectives in biological and applied animal venom research , 2022, GigaScience.

[4]  A. H. Laustsen,et al.  The rise of genomics in snake venom research: recent advances and future perspectives , 2022, GigaScience.

[5]  C. Linardich,et al.  Trait‐based vulnerability reveals hotspots of potential impact for a global marine invader , 2021, Global change biology.

[6]  B. Rinkevich,et al.  Long-term changes in population genetic features of a rapidly expanding marine invader: implication for invasion success , 2021, Biological Invasions.

[7]  W. Hodgson,et al.  In Vitro Neurotoxicity of Chinese Krait (Bungarus multicinctus) Venom and Neutralization by Antivenoms , 2021, Toxins.

[8]  Fei Gao,et al.  CNGBdb: China National GeneBank DataBase. , 2020, Yi chuan = Hereditas.

[9]  Fei Gao,et al.  CNSA: a data repository for archiving omics data , 2020, bioRxiv.

[10]  K. Holt,et al.  Benchmarking of long-read assemblers for prokaryote whole genome sequencing , 2019, F1000Research.

[11]  Jian Wang,et al.  Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly , 2019, Genome research.

[12]  D. Ray,et al.  Evolution and Diversity of Transposable Elements in Vertebrate Genomes , 2017, Genome biology and evolution.

[13]  N. Weisenfeld,et al.  Direct determination of diploid genome sequences , 2016, bioRxiv.

[14]  Leszek P. Pryszcz,et al.  Redundans: an assembly pipeline for highly heterozygous genomes , 2016, Nucleic Acids Research.

[15]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[16]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[17]  M. Yandell,et al.  Genome Annotation and Curation Using MAKER and MAKER‐P , 2014, Current protocols in bioinformatics.

[18]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[19]  Matthew Fraser,et al.  InterProScan 5: genome-scale protein function classification , 2014, Bioinform..

[20]  Drew R. Schield,et al.  The Burmese python genome reveals the molecular basis for extreme adaptation in snakes , 2013, Proceedings of the National Academy of Sciences.

[21]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[22]  T. Townsend,et al.  Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species , 2012, Biology Letters.

[23]  S. Hedges,et al.  The molecular evolutionary tree of lizards, snakes, and amphisbaenians. , 2009, Comptes rendus biologies.

[24]  Jonathan E. Allen,et al.  Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments , 2007, Genome Biology.

[25]  David W Mount,et al.  Using the Basic Local Alignment Search Tool (BLAST). , 2007, CSH protocols.

[26]  Zhao Xu,et al.  LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons , 2007, Nucleic Acids Res..

[27]  Burkhard Morgenstern,et al.  AUGUSTUS: a web server for gene finding in eukaryotes , 2004, Nucleic Acids Res..

[28]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[29]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[30]  Yves Bigot,et al.  Mobile Genetic Elements , 2012, Methods in Molecular Biology.

[31]  Sébastien Tempel Using and understanding RepeatMasker. , 2012, Methods in molecular biology.

[32]  Minoru Kanehisa,et al.  The KEGG database. , 2002, Novartis Foundation symposium.

[33]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000 , 2000, Nucleic Acids Res..

[34]  G. Benson,et al.  Tandem repeats finder: a program to analyze DNA sequences. , 1999, Nucleic acids research.

[35]  Rolf Apweiler,et al.  The SWISS-PROT protein sequence data bank and its supplement TrEMBL , 1997, Nucleic Acids Res..