Random walk on sparse random digraphs

A finite ergodic Markov chain exhibits cutoff if its distance to equilibrium remains close to its initial value over a certain number of iterations and then abruptly drops to near 0 on a much shorter time scale. Originally discovered in the context of card shuffling (Aldous and Diaconis in Am Math Mon 93:333–348, 1986), this remarkable phenomenon is now rigorously established for many reversible chains. Here we consider the non-reversible case of random walks on sparse directed graphs, for which even the equilibrium measure is far from being understood. We work under the configuration model, allowing both the in-degrees and the out-degrees to be freely specified. We establish the cutoff phenomenon, determine its precise window and prove that the cutoff profile approaches a universal shape. We also provide a detailed description of the equilibrium measure.

[1]  S. Chatterjee Stein’s method for concentration inequalities , 2006, math/0604352.

[2]  U. Rösler A fixed point theorem for distributions , 1992 .

[3]  Allan Sly,et al.  Random walks on the random graph , 2015, 1504.01999.

[4]  Julien Barral Moments, continuité, et analyse multifractale des martingales de Mandelbrot , 1999 .

[5]  J. Barral Mandelbrot Cascades and Related Topics , 2014 .

[6]  Quansheng Liu,et al.  On generalized multiplicative cascades , 2000 .

[7]  Alan M. Frieze,et al.  The cover time of sparse random graphs. , 2003, SODA '03.

[8]  C. Villani The founding fathers of optimal transport , 2009 .

[9]  Quansheng Liu The Growth of an Entire Characteristic Fonction and the Tail Probabilities of the Limit of a Tree Martingale , 1996 .

[10]  Quansheng Liu,et al.  Asymptotic properties and absolute continuity of laws stable by random weighted mean , 2001 .

[11]  Laurent Saloff-Coste,et al.  Random Walks on Finite Groups , 2004 .

[12]  Lajos Takács,et al.  Random walks on groups , 1982 .

[13]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[14]  Alan M. Frieze,et al.  Vacant Sets and Vacant Nets: Component Structures Induced by a Random Walk , 2016, SIAM J. Discret. Math..

[15]  Alan M. Frieze,et al.  The cover time of the preferential attachment graph , 2007, J. Comb. Theory, Ser. B.

[16]  Nelly Litvak,et al.  PageRank in Scale-Free Random Graphs , 2014, WAW.

[17]  Quansheng Liu Sur Une Équation Fonctionnelle Et SES Applications: Une Extension Du Théorème De Kesten-Stigum Concernant Des Processus De Branchement , 1997, Advances in Applied Probability.

[18]  Guan-Yu Chen,et al.  The cutoff phenomenon for ergodic Markov processes , 2008 .

[19]  Bruce A. Reed,et al.  The evolution of the mixing rate of a simple random walk on the giant component of a random graph , 2008, Random Struct. Algorithms.

[20]  H. Lacoin The Cutoff profile for the Simple-Exclusion process on the circle , 2015, 1502.00952.

[21]  Nelly Litvak,et al.  Ranking Algorithms on Directed Configuration Networks , 2014, 1409.7443.

[22]  Alan M. Frieze,et al.  The cover time of the giant component of a random graph , 2008, Random Struct. Algorithms.

[23]  Colin Cooper,et al.  Random Walks, Interacting Particles, Dynamic Networks: Randomness Can Be Helpful , 2011, SIROCCO.

[24]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[25]  L. Pratelli,et al.  Almost sure weak convergence of random probability measures , 2006 .

[26]  Alan M. Frieze,et al.  Stationary distribution and cover time of random walks on random digraphs , 2012, J. Comb. Theory, Ser. B.

[27]  Y. Peres,et al.  Critical random graphs: Diameter and mixing time , 2007, math/0701316.

[28]  Alan M. Frieze,et al.  The Cover Time of Random Regular Graphs , 2005, SIAM J. Discret. Math..

[29]  Jo Graham,et al.  Old and new , 2000 .

[30]  P. Diaconis,et al.  The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[32]  D. Freedman On Tail Probabilities for Martingales , 1975 .

[33]  Y. Peres,et al.  Mixing time of near-critical random graphs , 2009, 0908.3870.

[34]  Justin Salez,et al.  Cutoff for non-backtracking random walks on sparse random graphs , 2015 .

[35]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[36]  Nicholas C. Wormald,et al.  The mixing time of the giant component of a random graph , 2006, Random Struct. Algorithms.

[37]  Ronald L. Graham,et al.  Asymptotic Analysis of a Random Walk on a Hypercube with Many Dimensions , 1990, Random Struct. Algorithms.

[38]  C. McDiarmid Concentration , 1862, The Dental register.

[39]  Allan Sly,et al.  Cutoff phenomena for random walks on random regular graphs , 2008, 0812.0060.

[40]  Y. Peres,et al.  Cutoff on all Ramanujan graphs , 2015, 1507.04725.