Computing Bottleneck Distance for 2-D Interval Decomposable Modules

Computation of the interleaving distance between persistence modules is a central task in topological data analysis. For $1$-D persistence modules, thanks to the isometry theorem, this can be done by computing the bottleneck distance with known efficient algorithms. The question is open for most $n$-D persistence modules, $n>1$, because of the well recognized complications of the indecomposables. Here, we consider a reasonably complicated class called {\em $2$-D interval decomposable} modules whose indecomposables may have a description of non-constant complexity. We present a polynomial time algorithm to compute the bottleneck distance for these modules from indecomposables, which bounds the interleaving distance from above, and give another algorithm to compute a new distance called {\em dimension distance} that bounds it from below.

[1]  Steve Oudot,et al.  Persistence Theory - From Quiver Representations to Data Analysis , 2015, Mathematical surveys and monographs.

[2]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[3]  Andrea Cerri,et al.  A new approximation Algorithm for the Matching Distance in Multidimensional Persistence , 2011 .

[4]  Dmitriy Morozov,et al.  Geometry Helps to Compare Persistence Diagrams , 2016, ALENEX.

[5]  Klaus Lux,et al.  Computing Decompositions of Modules over Finite-Dimensional Algebras , 2007, Exp. Math..

[6]  Amit Patel,et al.  Categorified Reeb Graphs , 2015, Discret. Comput. Geom..

[7]  Ezra Miller Data structures for real multiparameter persistence modules , 2017, 1709.08155.

[8]  Peter Bubenik,et al.  Categorification of Persistent Homology , 2012, Discret. Comput. Geom..

[9]  Michael Atiyah,et al.  On the Krull-Schmidt theorem with application to sheaves , 1956 .

[10]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[11]  Michael Lesnick,et al.  Algebraic Stability of Zigzag Persistence Modules , 2016, Algebraic & Geometric Topology.

[12]  Cary Webb Decomposition of graded modules , 1985 .

[13]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[14]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[15]  Ulrich Bauer,et al.  Induced Matchings of Barcodes and the Algebraic Stability of Persistence , 2013, SoCG.

[16]  Håvard Bakke Bjerkevik Stability of higher-dimensional interval decomposable persistence modules , 2016, ArXiv.

[17]  Daniela Giorgi,et al.  A new algorithm for computing the 2-dimensional matching distance between size functions , 2011, Pattern Recognit. Lett..

[18]  Magnus Bakke Botnan,et al.  Computational Complexity of the Interleaving Distance , 2017, SoCG.

[19]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[20]  M. Ferri,et al.  Betti numbers in multidimensional persistent homology are stable functions , 2013 .

[21]  Claudia Landi,et al.  The rank invariant stability via interleavings , 2014, ArXiv.

[22]  Steve Oudot,et al.  Decomposition of Exact pfd Persistence Bimodules , 2020, Discret. Comput. Geom..

[23]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[24]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[25]  Amit Patel,et al.  Generalized persistence diagrams , 2016, J. Appl. Comput. Topol..