Inferring Genetic Networks with a Recurrent Neural Network Model Using Differential Evolution

In this chapter, we present an evolutionary approach for reverse-engineering gene regulatory networks (GRNs) from the temporal gene expression profile. The regulatory interaction among genes is modeled by the recurrent neural network (RNN) formalism. We used the differential evolution (DE) algorithm with a random restart strategy for inferring the underlying network structure as well as the regulatory parameters. The random restart mechanism is particularly useful for avoiding premature convergence and is hence expected to be valuable in recovering important regulations from noisy gene expression data. The algorithm has been applied for inferring regulation by analyzing gene expression data generated from both in silico and in vivo networks. We also investigate the effectiveness of the method in obtaining an acceptable network from a limited amount of noisy data.

[1]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Vohradský Neural network model of gene expression , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Patrik D'haeseleer,et al.  Linear Modeling of mRNA Expression Levels During CNS Development and Injury , 1998, Pacific Symposium on Biocomputing.

[4]  Aurélien Mazurie,et al.  Gene networks inference using dynamic Bayesian networks , 2003, ECCB.

[5]  Edward Keedwell,et al.  Discovering Gene Networks with a Neural-Genetic Hybrid , 2005, TCBB.

[6]  H. Iba,et al.  Inferring a system of differential equations for a gene regulatory network by using genetic programming , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[7]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[8]  Carsten Peterson,et al.  Random Boolean network models and the yeast transcriptional network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S Fuhrman,et al.  Reveal, a general reverse engineering algorithm for inference of genetic network architectures. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[10]  J. Valcárcel,et al.  Gene regulation: Breaking the second genetic code , 2010, Nature.

[11]  James M. Bower,et al.  Computational Modeling of Genetic and Biochemical Networks (Computational Molecular Biology) , 2004 .

[12]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[13]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[14]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Gary D. Stormo,et al.  Modeling Regulatory Networks with Weight Matrices , 1998, Pacific Symposium on Biocomputing.

[16]  M Wahde,et al.  Coarse-grained reverse engineering of genetic regulatory networks. , 2000, Bio Systems.

[17]  Richard Scheines,et al.  Constructing Bayesian Network Models of Gene Expression Networks from Microarray Data , 2000 .

[18]  Panayiotis E. Pintelas,et al.  Restartings: A Technique to Improve Classic Genetic Algorithms' Performance , 2007, International Conference on Computational Intelligence.

[19]  James M. Bower,et al.  Computational modeling of genetic and biochemical networks , 2001 .

[20]  David Page,et al.  Modelling regulatory pathways in E. coli from time series expression profiles , 2002, ISMB.

[21]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[22]  Zheng Li,et al.  Using a state-space model with hidden variables to infer transcription factor activities , 2006, Bioinform..

[23]  G. Walker Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. , 1984, Microbiological reviews.

[24]  H Matsuno,et al.  Hybrid Petri net representation of gene regulatory network. , 1999, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[25]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[26]  H. Iba,et al.  Reverse engineering genetic networks using evolutionary computation. , 2005, Genome informatics. International Conference on Genome Informatics.

[27]  João Ricardo Sato,et al.  Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method , 2007, Bioinform..

[28]  J. Hasty,et al.  Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Shuhei Kimura,et al.  Function approximation approach to the inference of reduced NGnet models of genetic networks , 2008, BMC Bioinformatics.

[30]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[31]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[32]  Kevin Murphy,et al.  Modelling Gene Expression Data using Dynamic Bayesian Networks , 2006 .

[33]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[34]  M. Savageau Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. , 1969, Journal of theoretical biology.

[35]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[36]  H. Iba,et al.  Inferring Gene Regulatory Networks using Differential Evolution with Local Search Heuristics , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[37]  Alvis Brazma,et al.  Current approaches to gene regulatory network modelling , 2007, BMC Bioinformatics.

[38]  Marcel J. T. Reinders,et al.  Genetic network models: a comparative study , 2001, SPIE BiOS.

[39]  R. Callard,et al.  Cytokines, chaos, and complexity. , 1999, Immunity.

[40]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[41]  Andreas Zell,et al.  Optimizing Topology and Parameters of Gene Regulatory Network Models from Time-Series Experiments , 2004, GECCO.

[42]  D. Mount,et al.  Cleavage of the Escherichia coli lexA protein by the recA protease. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[43]  B. Michel,et al.  After 30 Years of Study, the Bacterial SOS Response Still Surprises Us , 2005, PLoS biology.

[44]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[45]  Alvis Brazma,et al.  Reconstruction of gene regulatory networks under the finite state linear model. , 2005, Genome informatics. International Conference on Genome Informatics.

[46]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[47]  Edward R. Dougherty,et al.  From Boolean to probabilistic Boolean networks as models of genetic regulatory networks , 2002, Proc. IEEE.

[48]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[49]  C. Janion,et al.  Historical Aspects , 1957 .

[50]  Eric Mjolsness,et al.  From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data , 1999, NIPS.

[51]  Cecil O. Alford,et al.  Applications of Random Restart to Genetic Algorithms , 1996, Inf. Sci..

[52]  Adam P. Arkin,et al.  Network News: Innovations in 21st Century Systems Biology , 2011, Cell.

[53]  Xin Yao,et al.  Evolving artificial neural networks , 1999, Proc. IEEE.

[54]  Fang-Xiang Wu,et al.  Modeling Gene Expression from Microarray Expression Data with State-Space Equations , 2003, Pacific Symposium on Biocomputing.

[55]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[56]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[58]  Mark Schena,et al.  DNA microarrays : a practical approach , 1999 .

[59]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[60]  Nasimul Noman,et al.  Reconstruction of Gene Regulatory Networks using Differential Evolution , 2010, 2010 13th International Conference on Computer and Information Technology (ICCIT).

[61]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[62]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[63]  Hitoshi Iba,et al.  Reverse engineering gene regulatory network from microarray data using linear time-variant model , 2010, BMC Bioinformatics.

[64]  Shuhei Kimura,et al.  Genetic network inference as a series of discrimination tasks , 2009, Bioinform..

[65]  Hitoshi Iba,et al.  Construction of genetic network using evolutionary algorithm and combined fitness function. , 2003, Genome informatics. International Conference on Genome Informatics.

[66]  H. Iba,et al.  Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression. , 2004, Genome informatics. International Conference on Genome Informatics.

[67]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Marcel J. T. Reinders,et al.  Linear Modeling of Genetic Networks from Experimental Data , 2000, ISMB.

[69]  Byoung-Tak Zhang,et al.  Identification of biochemical networks by S-tree based genetic programming , 2006, Bioinform..

[70]  John A. Hertz,et al.  Modeling Genetic Regulatory Dynamics in Neural Development , 2002, J. Comput. Biol..

[71]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Vohradský Neural Model of the Genetic Network* , 2001, The Journal of Biological Chemistry.

[73]  Robert Clarke,et al.  Inference of Gene Regulatory Networks from Time Course Gene Expression Data Using Neural Networks and Swarm Intelligence , 2006, 2006 IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology.