Dynamic control of plasmon generation by an individual quantum system.

Controlling light on the nanoscale in a similar way as electric currents has the potential to revolutionize the exchange and processing of information. Although light can be guided on this scale by coupling it to plasmons, that is, collective electron oscillations in metals, their local electronic control remains a challenge. Here, we demonstrate that an individual quantum system is able to dynamically gate the electrical plasmon generation. Using a single molecule in a double tunnel barrier between two electrodes we show that this gating can be exploited to monitor fast changes of the quantum system itself and to realize a single-molecule plasmon-generating field-effect transistor operable in the gigahertz range. This opens new avenues toward atomic scale quantum interfaces bridging nanoelectronics and nanophotonics.

[1]  James K. Gimzewski,et al.  Enhanced Photon Emission in Scanning Tunnelling Microscopy. , 1989 .

[2]  Yang Zhang,et al.  Excitation of propagating surface plasmons with a scanning tunnelling microscope , 2011, Nanotechnology.

[3]  L. Novotný,et al.  Electroluminescence from graphene excited by electron tunneling , 2014, Nanotechnology.

[4]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[5]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[6]  W H Weber,et al.  Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. , 1979, Optics letters.

[7]  Vladimir M. Shalaev,et al.  Plasmonics Goes Quantum , 2011, Science.

[8]  K. Kern,et al.  Quantitative mapping of fast voltage pulses in tunnel junctions by plasmonic luminescence , 2013 .

[9]  Berndt,et al.  Atomic resolution in photon emission induced by a scanning tunneling microscope. , 1995, Physical review letters.

[10]  C. Silien,et al.  Atomic scale conductance induced by single impurity charging. , 2005, Physical review letters.

[11]  J. Lambe,et al.  Light Emission from Inelastic Electron Tunneling , 1976 .

[12]  Robert A. Wolkow,et al.  Field regulation of single-molecule conductivity by a charged surface atom , 2005, Nature.

[13]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[14]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[15]  M B Plenio,et al.  Scalable reconstruction of density matrices. , 2012, Physical review letters.

[16]  Frank Schramm,et al.  Molecular orbital gates for plasmon excitation. , 2013, Nano letters.

[17]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[18]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[19]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[20]  Taekjip Ha,et al.  Femtosecond tunneling response of surface plasmon polaritons , 1998 .

[21]  R. Kiehl,et al.  Resonant tunneling transistor with quantum well base and high‐energy injection: A new negative differential resistance device , 1985 .

[22]  Lukas Novotny,et al.  Electrical excitation of surface plasmons. , 2011, Physical review letters.

[23]  M. D. Lukin,et al.  Quantum Plasmonic Circuits , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[24]  D. Koller,et al.  Organic plasmon-emitting diode , 2008 .

[25]  Roman Kolesov,et al.  Wave–particle duality of single surface plasmon polaritons , 2009 .

[26]  Xiang Zhang,et al.  Toward integrated plasmonic circuits , 2012 .

[27]  Jurriaan Schmitz,et al.  A silicon-based electrical source of surface plasmon polaritons. , 2010, Nature materials.

[28]  Liesbet Lagae,et al.  Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. , 2010, Nano letters.

[29]  Mark L. Brongersma,et al.  Electrically driven subwavelength optical nanocircuits , 2014, Nature Photonics.