EEG/MEG Source Imaging: Methods, Challenges, and Open Issues

We present the four key areas of research—preprocessing, the volume conductor, the forward problem, and the inverse problem—that affect the performance of EEG and MEG source imaging. In each key area we identify prominent approaches and methodologies that have open issues warranting further investigation within the community, challenges associated with certain techniques, and algorithms necessitating clarification of their implications. More than providing definitive answers we aim to identify important open issues in the quest of source localization.

[1]  M. Scherg,et al.  Evoked dipole source potentials of the human auditory cortex. , 1986, Electroencephalography and clinical neurophysiology.

[2]  Joseph G. Hoffman,et al.  Physical Techniques in Biological Research , 1963 .

[3]  B. Lütkenhöner,et al.  The resolution-field concept. , 1997, Electroencephalography and Clinical Neurophysiology.

[4]  D. A. Driscoll,et al.  EEG electrode sensitivity--an application of reciprocity. , 1969, IEEE transactions on bio-medical engineering.

[5]  S. Supek,et al.  Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution , 1993, IEEE Transactions on Biomedical Engineering.

[6]  A. Gevins,et al.  Mapping cognitive brain function with modern high-resolution electroencephalography , 1995, Trends in Neurosciences.

[7]  Nevzat G. Gencer,et al.  Electrical conductivity imaging via contactless measurements , 1999, IEEE Transactions on Medical Imaging.

[8]  Silke Dodel,et al.  Accuracy of Two Dipolar Inverse Algorithms Applying Reciprocity for Forward Calculation , 2000, Comput. Biomed. Res..

[9]  Bernd Lütkenhöner,et al.  Figures of merit to compare distributed linear inverse solutions , 1996, Brain Topography.

[10]  M. Hämäläinen,et al.  Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data , 1989, IEEE Transactions on Biomedical Engineering.

[11]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[12]  Carlos E. Davila,et al.  Subspace averaging of steady-state visual evoked potentials , 2000, IEEE Transactions on Biomedical Engineering.

[13]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[14]  Rolando J. Biscay,et al.  Projective Methods for the Magnetic Direct Problem , 1989 .

[15]  Jaakko Malmivuo,et al.  Effect of skull resistivity on the spatial resolutions of EEG and MEG , 2004, IEEE Transactions on Biomedical Engineering.

[16]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[17]  E. Ecer,et al.  Numerical Linear Algebra and Applications , 1995, IEEE Computational Science and Engineering.

[18]  D. Tucker,et al.  Spatial sampling and filtering of EEG with spline Laplacians to estimate cortical potentials , 2005, Brain Topography.

[19]  J P Kaipio,et al.  Effects of local skull inhomogeneities on EEG source estimation. , 1999, Medical engineering & physics.

[20]  H. I. Saleheen,et al.  New finite difference formulations for general inhomogeneous anisotropic bioelectric problems , 1997, IEEE Transactions on Biomedical Engineering.

[21]  A. Gevins,et al.  Beyond topographic mapping: Towards functional-anatomical imaging with 124-channel EEGs and 3-D MRIs , 2005, Brain Topography.

[22]  M. Murray,et al.  EEG source imaging , 2004, Clinical Neurophysiology.

[23]  Masatoshi Nakamura,et al.  Parametric modeling of somatosensory evoked potentials using discrete cosine transform , 2001, IEEE Transactions on Biomedical Engineering.

[24]  B. Yvert,et al.  An evaluation of dipole reconstruction accuracy with spherical and realistic head models in MEG , 1999, Clinical Neurophysiology.

[25]  Christoph M. Michel,et al.  Electrical neuroimaging based on biophysical constraints , 2004, NeuroImage.

[26]  S. Gonzalez-Andino,et al.  A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem , 1998, IEEE Transactions on Biomedical Engineering.

[27]  A. I. Dias,et al.  Analysis of the EEG dynamics of epileptic activity in gelastic seizures using decomposition in independent components , 2006, Clinical Neurophysiology.

[28]  J. Lawrence Katz,et al.  Dielectric Properties of Fluid-Saturated Bone , 1980, IEEE Transactions on Biomedical Engineering.

[29]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[30]  H. Griffiths Magnetic induction tomography , 2001 .

[31]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[32]  G. Huiskamp,et al.  The need for correct realistic geometry in the inverse EEG problem , 1999, IEEE Transactions on Biomedical Engineering.

[33]  C. Braun,et al.  Hand Movement Direction Decoded from MEG and EEG , 2008, The Journal of Neuroscience.

[34]  B. Radich,et al.  EEG dipole localization bounds and MAP algorithms for head models with parameter uncertainties , 1995, IEEE Transactions on Biomedical Engineering.

[35]  Zoltan J. Koles,et al.  A computationally efficient method for accurately solving the EEG forward problem in a finely discretized head model , 2005, Clinical Neurophysiology.

[36]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[37]  G. Backus,et al.  The Resolving Power of Gross Earth Data , 1968 .

[38]  B. Jansen,et al.  Phase synchronization of the ongoing EEG and auditory EP generation , 2003, Clinical Neurophysiology.

[39]  H Griffiths,et al.  Magnetic Induction Tomography: A Measuring System for Biological Tissues , 1999, Annals of the New York Academy of Sciences.

[40]  Jaakko Malmivuo,et al.  Effect of measurement noise and electrode density on the spatial resolution of cortical potential distribution with different resistivity values for the skull , 2006, IEEE Transactions on Biomedical Engineering.

[41]  Olaf Hauk,et al.  Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data , 2004, NeuroImage.

[42]  C. Taber,et al.  Taber's Cyclopedic Medical Dictionary , 1963 .

[43]  P. Rossini,et al.  High-resolution electro-encephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images , 2000, Medical and Biological Engineering and Computing.

[44]  F Babiloni,et al.  High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject's head model. , 1997, Electroencephalography and clinical neurophysiology.

[45]  C. E. Acar,et al.  Sensitivity of EEG and MEG measurements to tissue conductivity , 2004, Physics in medicine and biology.

[46]  Ramesh Srinivasan,et al.  Estimating the spatial Nyquist of the human EEG , 1998 .

[47]  L. Geddes,et al.  The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist , 1967, Medical and biological engineering.

[48]  Katrina Wendel,et al.  The Influence of CSF on EEG Sensitivity Distributions of Multilayered Head Models , 2008, IEEE Transactions on Biomedical Engineering.

[49]  William H. Press,et al.  Numerical recipes in C , 2002 .

[50]  J. Malmivuo,et al.  Sensitivity distributions of EEG and MEG measurements , 1997, IEEE Transactions on Biomedical Engineering.

[51]  Herman P. Schwan,et al.  CHAPTER 6 – DETERMINATION OF BIOLOGICAL IMPEDANCES1 , 1963 .

[52]  Gregor Thut,et al.  A glimpse into your vision , 2007, Human brain mapping.

[53]  R Hoekema,et al.  Multigrid solution of the potential field in modeling electrical nerve stimulation. , 1998, Computers and biomedical research, an international journal.

[54]  K. Foster,et al.  Dielectric Permittivity and Electrical Conductivity of Fluid Saturated Bone , 1983, IEEE Transactions on Biomedical Engineering.

[55]  John W Belliveau,et al.  Monte Carlo simulation studies of EEG and MEG localization accuracy , 2002, Human brain mapping.

[56]  M. Lynn,et al.  The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations. , 1967, Biophysical journal.

[57]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[58]  M. Peters,et al.  Volume conduction effects in EEG and MEG. , 1998, Electroencephalography and clinical neurophysiology.

[59]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[60]  Thom F. Oostendorp,et al.  The conductivity of the human skull: results of in vivo and in vitro measurements , 2000, IEEE Transactions on Biomedical Engineering.

[61]  C J Aine,et al.  Spatio‐temporal modeling of neuromagnetic data: I. Multi‐source location versus time‐course estimation accuracy , 1997, Human brain mapping.

[62]  Asaid Khateb,et al.  Electrophysiological correlates of affective blindsight , 2009, NeuroImage.

[63]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[64]  Katrina Wendel,et al.  Correlation between Live and Post Mortem Skull Conductivity Measurements , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[65]  Gregor Thut,et al.  Prediction of response speed by anticipatory high‐frequency (gamma band) oscillations in the human brain , 2005, Human brain mapping.

[66]  K. Foster,et al.  Dielectric Properties of Fluid-Saturated Bone - The Effect of Variation in Conductivity of Immersion Fluid , 1984, IEEE Transactions on Biomedical Engineering.

[67]  T W Picton,et al.  Separation and identification of event-related potential components by brain electric source analysis. , 1991, Electroencephalography and clinical neurophysiology. Supplement.

[68]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[69]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[70]  I. Lemahieu,et al.  Dipole location errors in electroencephalogram source analysis due to volume conductor model errors , 2000, Medical and Biological Engineering and Computing.

[71]  J. Haueisen,et al.  Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head , 1997, IEEE Transactions on Biomedical Engineering.

[72]  R Plonsey,et al.  The nature of sources of bioelectric and biomagnetic fields. , 1982, Biophysical journal.

[73]  Febo Cincotti,et al.  Spatial enhancement of EEG data by surface Laplacian estimation: the use of magnetic resonance imaging-based head models , 2001, Clinical Neurophysiology.

[74]  R. Ilmoniemi,et al.  Interpreting magnetic fields of the brain: minimum norm estimates , 2006, Medical and Biological Engineering and Computing.

[75]  P. Hazemann,et al.  Handbook of Electroencephalography and Clinical Neurophysiology , 1975 .

[76]  David Poeppel,et al.  Performance of an MEG adaptive-beamformer technique in the presence of correlated neural activities: effects on signal intensity and time-course estimates , 2002, IEEE Transactions on Biomedical Engineering.

[77]  William R B Lionheart,et al.  Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT). , 2003, Physiological measurement.

[78]  S. Sato,et al.  How well does a three-sphere model predict positions of dipoles in a realistically shaped head? , 1993, Electroencephalography and clinical neurophysiology.

[79]  Bin He,et al.  A computer simulation study of cortical imaging from scalp potentials , 1998, IEEE Transactions on Biomedical Engineering.

[80]  K. Blinowska,et al.  Multichannel matching pursuit and EEG inverse solutions , 2005, Journal of Neuroscience Methods.

[81]  Nevzat G. Gencer,et al.  Parallel implementation of the accelerated BEM approach for EMSI of the human brain , 2008, Medical & Biological Engineering & Computing.

[82]  N. G. Gencer,et al.  An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging. , 2004, Physics in medicine and biology.

[83]  C Gabriel,et al.  The dielectric properties of biological tissues: I. Literature survey. , 1996, Physics in medicine and biology.

[84]  Geoffrey H. Sperber,et al.  Clinically Oriented Anatomy , 2006 .

[85]  B.N. Cuffin,et al.  EEG localization accuracy improvements using realistically shaped head models , 1996, IEEE Transactions on Biomedical Engineering.

[86]  C. Michel,et al.  128-Channel EEG Source Imaging in Epilepsy: Clinical Yield and Localization Precision , 2004, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[87]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[88]  Fetsje Bijma,et al.  In vivo measurement of the brain and skull resistivities using an EIT-based method and realistic models for the head , 2003, IEEE Transactions on Biomedical Engineering.

[89]  P. V. van Rijen,et al.  Measurement of the Conductivity of Skull, Temporarily Removed During Epilepsy Surgery , 2004, Brain Topography.

[90]  G Klösch,et al.  Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex , 2001, Neuroscience.