Refinements to the Neher-McGrath model for calculating the ampacity of underground cables

The Neher-McGrath method has been widely accepted as an accurate and relatively simple way to calculate the ampacity of underground cables. It is based on a number of assumptions that simplify the mathematics, but at the same time limit the accuracy and scope of the model. Furthermore, the model relies upon correlations that are now dated, because more up-to-date and accurate heat transfer correlations are now available. This paper examines improvements to the Neher-McGrath model in three different areas: a more accurate expression for the mutual heating parameter that accounts for unequal heating among the cables; improved correlations for the thermal resistance of a fluid layer that exists in pipe-type cables and cables installed in ducts; and a more accurate model for the thermal resistance of concrete duct banks with nonsquare cross-sections. Example installations are then considered to illustrate how the incorporation of these changes will affect the ampacity of the installation. The refinements suggested result in a more complex mathematical algorithm and require more computational time, but the changes can result in significantly different ampacity values than the ones provided by the Neher-McGrath model.

[1]  G.J. Anders,et al.  Advanced computer programs for power cable ampacity calculations , 1990, IEEE Computer Applications in Power.

[2]  F. H. Buller,et al.  The thermal resistance between cables and a surrounding pipe or duct wall , 1950, Transactions of the American Institute of Electrical Engineers.

[3]  Kary Saleeby,et al.  Effective Thermal Resistivity for Power Cables Buried in Thermal Backfill , 1979, IEEE Transactions on Power Apparatus and Systems.

[4]  S. J. Rosch The current-carrying capacity of rubber-insulated conductors , 1938, Electrical Engineering.

[5]  Paul Greebler,et al.  Heat Transfer Study on Power Cable Ducts and Duct Assemblies , 1950, Transactions of the American Institute of Electrical Engineers.

[6]  L. H. Fink Control of the Thermal Environment of Buried Cable Systems [includes discussion] , 1954, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[7]  George J. Anders Rating of cables on riser poles, in trays, in tunnels and shafts-a review , 1996 .

[8]  M. H. McGrath,et al.  The calculation of the temperature rise and load capability of cable systems , 1957, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[9]  K.G.T. Hollands,et al.  A General Method of Obtaining Approximate Solutions to Laminar and Turbulent Free Convection Problems , 1975 .

[10]  G. J. Anders,et al.  Generalized Coefficients of External Thermal Resistance for Ampacity Evaluation of Underground Multiple Cable Systems , 1987, IEEE Transactions on Power Delivery.

[11]  M. El-Kady,et al.  Extended Values for Geometric Factor of External Thermal Resistance of Cables in Duct Banks , 1985, IEEE Transactions on Power Apparatus and Systems.