Efficient big data assimilation through sparse representation: A 3D benchmark case study in petroleum engineering

Data assimilation is an important discipline in geosciences that aims to combine the information contents from both prior geophysical models and observational data (observations) to obtain improved model estimates. Ensemble-based methods are among the state-of-the-art assimilation algorithms in the data assimilation community. When applying ensemble-based methods to assimilate big geophysical data, substantial computational resources are needed in order to compute and/or store certain quantities (e.g., the Kalman-gain-type matrix), given both big model and data sizes. In addition, uncertainty quantification of observational data, e.g., in terms of estimating the observation error covariance matrix, also becomes computationally challenging, if not infeasible. To tackle the aforementioned challenges in the presence of big data, in a previous study, the authors proposed a wavelet-based sparse representation procedure for 2D seismic data assimilation problems (also known as history matching problems in petroleum engineering). In the current study, we extend the sparse representation procedure to 3D problems, as this is an important step towards real field case studies. To demonstrate the efficiency of the extended sparse representation procedure, we apply an ensemble-based seismic history matching framework with the extended sparse representation procedure to a 3D benchmark case, the Brugge field. In this benchmark case study, the total number of seismic data is in the order of O(106). We show that the wavelet-based sparse representation procedure is extremely efficient in reducing the size of seismic data, while preserving the salient features of seismic data. Moreover, even with a substantial data-size reduction through sparse representation, the ensemble-based seismic history matching framework can still achieve good estimation accuracy.

[1]  Gilles Bellefleur,et al.  Enhancing 3D post‐stack seismic data acquired in hardrock environment using 2D curvelet transform , 2015 .

[2]  Tomoo Ushio,et al.  “Big Data Assimilation” Toward Post-Petascale Severe Weather Prediction: An Overview and Progress , 2016, Proceedings of the IEEE.

[3]  Dean S. Oliver,et al.  Multiscale parameterization with adaptive regularization for improved assimilation of nonlocal observation , 2012 .

[4]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[5]  M. Small,et al.  Characterizing pseudoperiodic time series through the complex network approach , 2008 .

[6]  A. Buland,et al.  Bayesian linearized AVO inversion , 2003 .

[7]  A. Reynolds,et al.  Combining sensitivities and prior information for covariance localization in the ensemble Kalman filter for petroleum reservoir applications , 2011 .

[8]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[9]  T. Mukerji,et al.  The Rock Physics Handbook , 1998 .

[10]  Mary F. Wheeler,et al.  Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method , 2013 .

[11]  Sigurd Ivar Aanonsen,et al.  Ensemble Based 4D Seismic History Matching: Integration of Different Levels and Types of Seismic Data , 2010 .

[12]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[13]  Xiaodong Luo,et al.  Estimating observation error covariance matrix of seismic data from a perspective of image denoising , 2016, Computational Geosciences.

[14]  Abeeb A. Awotunde,et al.  A multiresolution adjoint sensitivity analysis of time-lapse saturation maps , 2014, Computational Geosciences.

[15]  Tor Arne Johansen,et al.  Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter , 2007 .

[16]  Xiaodong Luo,et al.  An Ensemble 4D Seismic History Matching Framework with Sparse Representation Based on Wavelet Multiresolution Analysis , 2016 .

[17]  T. Mukerji,et al.  The Rock Physics Handbook: Contents , 2009 .

[18]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[19]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[20]  Vivek K. Goyal,et al.  Compressed History Matching: Exploiting Transform-Domain Sparsity for Regularization of Nonlinear Dynamic Data Integration Problems , 2010 .

[21]  A. Nur,et al.  Wave Velocities in Sediments , 1990 .

[22]  Vasileios Karyotis,et al.  A hyperbolic space analytics framework for big network data and their applications , 2016, IEEE Network.

[23]  G. Evensen,et al.  An ensemble Kalman smoother for nonlinear dynamics , 2000 .

[24]  Albert C. Reynolds,et al.  History-Matching Production and Seismic Data in a Real Field Case Using the Ensemble Smoother With Multiple Data Assimilation , 2013, ANSS 2013.

[25]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[26]  Alexandre A. Emerick Analysis of the performance of ensemble-based assimilation of production and seismic data , 2016 .

[27]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[28]  Martin Landrø,et al.  Nonlinear inversion for estimating reservoir parameters from time-lapse seismic data , 2008 .

[29]  Geir Naevdal,et al.  Iterative Ensemble Smoother as an Approximate Solution to a Regularized Minimum-Average-Cost Problem: Theory and Applications , 2015, 1505.01135.

[30]  Shuyu Sun,et al.  History Matching of Electromagnetically Heated Reservoirs Incorporating Full-Wavefield Seismic and Electromagnetic Imaging , 2015 .

[31]  Olivier Gosselin,et al.  Effect of Scale Dependent Data Correlations in an Integrated History Matching Loop Combining Production Data and 4D Seismic Data , 2003 .

[32]  M Small,et al.  Complex network from pseudoperiodic time series: topology versus dynamics. , 2006, Physical review letters.

[33]  Maarten Jansen,et al.  Noise Reduction by Wavelet Thresholding , 2001 .

[34]  I. Hoteit,et al.  Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs , 2017 .

[35]  D. Oliver,et al.  Cross-covariances and localization for EnKF in multiphase flow data assimilation , 2010 .

[36]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[37]  Fuqing Zhang,et al.  Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation , 2016 .

[38]  Zhong-Ke Gao,et al.  Multiscale complex network for analyzing experimental multivariate time series , 2015 .

[39]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[40]  Tomoo Ushio,et al.  “Big Data Assimilation” Revolutionizing Severe Weather Prediction , 2016 .

[41]  Martin Landrø,et al.  Estimation of pressure-saturation changes for unconsolidated reservoir rocks with high VP/VS ratio , 2014 .

[42]  Olivier Talagrand,et al.  Assimilation of Observations, an Introduction (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice) , 1997 .

[43]  Michael Small,et al.  Complex network analysis of time series , 2016 .

[44]  R. Arts,et al.  Distance parameterization for efficient seismic history matching with the ensemble Kalman Filter , 2012, Computational Geosciences.

[45]  J. Coatrieux,et al.  Improving Low-dose Cardiac CT Images based on 3D Sparse Representation , 2016, Scientific Reports.

[46]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[47]  Richard A. Frazin,et al.  Time-resolved cardiac CT reconstruction using the ensemble Kalman Filter , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[48]  Shuyu Sun,et al.  Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification , 2015 .

[49]  Olwijn Leeuwenburgh,et al.  Seismic History Matching of Fluid Fronts Using the Ensemble Kalman Filter , 2013 .

[50]  Andreas Spanias,et al.  Transform methods for seismic data compression , 1991, IEEE Trans. Geosci. Remote. Sens..

[51]  Wei-Dong Dang,et al.  Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series , 2016, Scientific Reports.

[52]  S. Mallat A wavelet tour of signal processing , 1998 .

[53]  Ying Wah Teh,et al.  Big data reduction framework for value creation in sustainable enterprises , 2016, Int. J. Inf. Manag..

[54]  M. Mccabe,et al.  Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation , 2008 .

[55]  T. Mukerji,et al.  Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk , 2005 .

[56]  A. Reynolds,et al.  History matching time-lapse seismic data using the ensemble Kalman filter with multiple data assimilations , 2012, Computational Geosciences.

[57]  Trond Mannseth,et al.  Near-Well Reservoir Monitoring Through Ensemble Kalman Filter , 2002 .

[58]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[59]  Tareq Y. Al-Naffouri,et al.  A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements , 2016, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[60]  Anahita Abadpour,et al.  4D Seismic History Matching With Ensemble Kalman Filter-Assimilation on Hausdorff Distance to Saturation Front , 2013, ANSS 2013.

[61]  Raymond D. Mindlin,et al.  Compliance of elastic bodies in contact , 1949 .

[62]  Jean-Luc Starck,et al.  Source detection using a 3D sparse representation: application to the Fermi gamma-ray space telescope , 2009, 0904.3299.

[63]  Roland N. Horne,et al.  Multiresolution Wavelet Analysis for Improved Reservoir Description , 2005 .

[64]  Dennis Denney,et al.  Results of the Brugge Benchmark Study for Flooding Optimization and History Matching , 2009 .

[65]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .

[66]  Dean S. Oliver,et al.  Ensemble-based multi-scale history-matching using second-generation wavelet transform , 2015, Computational Geosciences.

[67]  A. Nur,et al.  Critical porosity; a key to relating physical properties to porosity in rocks , 1998 .

[68]  Behnam Jafarpour,et al.  Prior model identification during subsurface flow data integration with adaptive sparse representation techniques , 2013, Computational Geosciences.

[69]  Martin Landrø,et al.  Discrimination between pressure and fluid saturation changes from time-lapse seismic data , 2001 .

[70]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[71]  Dean S. Oliver,et al.  THE ENSEMBLE KALMAN FILTER IN RESERVOIR ENGINEERING-A REVIEW , 2009 .