Correlation networks visualization

New, in silico ways of generating hypotheses based on large data sets have emerged in the past decade. These data sets have been used to investigate different aspects of plant biology, especially at the level of transcriptome, from tissue-specific expression patterns to patterns in as little as a few cells. Such publicly available data are a boon to researchers for hypothesis generation by providing a guide for experimental work such as phenotyping or genetic analysis. More advanced computational methods can leverage these data via gene coexpression analysis, the results of which can be visualized and refined using network analysis. Other kinds of networks of, e.g., protein–protein interactions, can also be used to inform biology. These networks can be visualized and analyzed with additional information on gene expression levels, subcellular localization, etc., or with other emerging kinds information. Finally, cross-level correlation is an area that will become increasingly important. Visualizing these cross-level correlations will require new data visualization tools.

[1]  Hailin Chen,et al.  STARNET 2: a web-based tool for accelerating discovery of gene regulatory networks using microarray co-expression data , 2009, BMC Bioinformatics.

[2]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[3]  David Warde-Farley,et al.  GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function , 2008, Genome Biology.

[4]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[5]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[6]  N. Provart,et al.  BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. , 2012, The Plant journal : for cell and molecular biology.

[7]  Klaas Vandepoele,et al.  Comparative Network Analysis Reveals That Tissue Specificity and Gene Function Are Important Factors Influencing the Mode of Expression Evolution in Arabidopsis and Rice1[W] , 2011, Plant Physiology.

[8]  Staffan Persson,et al.  Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. , 2009, Plant, cell & environment.

[9]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[10]  Vladimir Batagelj,et al.  Pajek - Program for Large Network Analysis , 1999 .

[11]  A. Bonner,et al.  Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions , 2011, Proceedings of the National Academy of Sciences.

[12]  E. Bornberg-Bauer,et al.  The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. , 2007, The Plant journal : for cell and molecular biology.

[13]  Kengo Kinoshita,et al.  ATTED-II provides coexpressed gene networks for Arabidopsis , 2008, Nucleic Acids Res..

[14]  A. Harvey Millar,et al.  A Predicted Interactome for Arabidopsis1[C][W][OA] , 2007, Plant Physiology.

[15]  R. Lister,et al.  Highly Integrated Single-Base Resolution Maps of the Epigenome in Arabidopsis , 2008, Cell.

[16]  Jonathan D. G. Jones,et al.  Evidence for Network Evolution in an Arabidopsis Interactome Map , 2011, Science.

[17]  E. Marcotte,et al.  Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana , 2010, Nature Biotechnology.

[18]  Grier P Page,et al.  CressExpress: A Tool For Large-Scale Mining of Expression Data from Arabidopsis1[W][OA] , 2008, Plant Physiology.

[19]  Daniel L. Mace,et al.  A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns , 2007, Science.

[20]  N. Provart,et al.  Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology , 2009, The Plant Cell Online.

[21]  Michael Kohl,et al.  Cytoscape: software for visualization and analysis of biological networks. , 2011, Methods in molecular biology.

[22]  Anton J. Enright,et al.  Network visualization and analysis of gene expression data using BioLayout Express3D , 2009, Nature Protocols.

[23]  Joshua L. Heazlewood,et al.  SUBA: the Arabidopsis Subcellular Database , 2006, Nucleic Acids Res..

[24]  Fabien Jourdan,et al.  Intuitive Visualization and Analysis of Multi-Omics Data and Application to Escherichia coli Carbon Metabolism , 2011, PloS one.

[25]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[26]  Vipin T. Sreedharan,et al.  Multiple reference genomes and transcriptomes for Arabidopsis thaliana , 2011, Nature.

[27]  Joseph R. Ecker,et al.  Detection of allele-specific methylation through a generalized heterogeneous epigenome model , 2012, Bioinform..

[28]  D. Shasha,et al.  A Gene Expression Map of the Arabidopsis Root , 2003, Science.

[29]  Nicholas J. Provart,et al.  An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets , 2007, PloS one.

[30]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[31]  Jill M Dowen,et al.  Widespread dynamic DNA methylation in response to biotic stress , 2012, Proceedings of the National Academy of Sciences.

[32]  Kazuo Shinozaki,et al.  The AtGenExpress hormone and chemical treatment data set: experimental design, data evaluation, model data analysis and data access. , 2008, The Plant journal : for cell and molecular biology.

[33]  Gunnar Rätsch,et al.  At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana , 2008, Genome Biology.

[34]  B. Usadel,et al.  PlaNet: Combined Sequence and Expression Comparisons across Plant Networks Derived from Seven Species[W][OA] , 2011, Plant Cell.

[35]  Björn Usadel,et al.  CSB.DB: a comprehensive systems-biology database , 2004, Bioinform..

[36]  J. Schroeder,et al.  Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool , 2008, Plant Methods.

[37]  R. Mott,et al.  The 1001 Genomes Project for Arabidopsis thaliana , 2009, Genome Biology.

[38]  Hideyuki Suzuki,et al.  CoP: a database for characterizing co-expressed gene modules with biological information in plants , 2010, Bioinform..

[39]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[40]  Jun Dong,et al.  Geometric Interpretation of Gene Coexpression Network Analysis , 2008, PLoS Comput. Biol..

[41]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[42]  S. Assmann,et al.  Gene-Sharing Networks Reveal Organizing Principles of Transcriptomes in Arabidopsis and Other Multicellular Organisms[W] , 2012, Plant Cell.

[43]  Kiana Toufighi,et al.  The Botany Array Resource: E-northerns, Expression Angling, and Promoter Analyses , 2022 .

[44]  P. Zimmermann,et al.  GENEVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox1[w] , 2004, Plant Physiology.

[45]  M. Schmid,et al.  Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana , 2003, Science.

[46]  Katja Baerenfaller,et al.  Taking the Next Step: Building an Arabidopsis Information Portal[OA] , 2012, Plant Cell.