Combined pangenomics and transcriptomics reveals core and redundant virulence processes in a rapidly evolving fungal plant pathogen

[1]  S. Strelkov,et al.  A global pangenome for the wheat fungal pathogen Pyrenophora tritici-repentis and prediction of effector protein structural homology , 2022, bioRxiv.

[2]  V. Nalam,et al.  A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea , 2022, PloS one.

[3]  G. Walther,et al.  Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection , 2021, Nature Microbiology.

[4]  P. Solomon,et al.  Remarkable recent changes in the genetic diversity of the avirulence gene AvrStb6 in global populations of the wheat pathogen Zymoseptoria tritici , 2021, Molecular plant pathology.

[5]  B. Thomma,et al.  An ancient antimicrobial protein co-opted by a fungal plant pathogen for in planta mycobiome manipulation , 2021, Proceedings of the National Academy of Sciences.

[6]  Yoonsoo Hahn,et al.  Rapid protein sequence evolution via compensatory frameshift is widespread in RNA virus genomes , 2021, BMC Bioinform..

[7]  T. Friesen,et al.  Characterization of Effector-Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation. , 2021, Annual review of phytopathology.

[8]  Michael F. Seidl,et al.  Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins , 2020, Nature Plants.

[9]  P. Solomon,et al.  Remarkable recent changes in genetic diversity of the avirulence gene AvrStb6 in global populations of the wheat pathogen Zymoseptoria tritici , 2020, bioRxiv.

[10]  Raquel O. Rocha,et al.  Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox‐mediated host innate immunity suppression , 2020, Molecular microbiology.

[11]  B. Thomma,et al.  Three LysM effectors of Zymoseptoria tritici collectively disarm chitin‐triggered plant immunity , 2020, bioRxiv.

[12]  B. McDonald,et al.  Maintenance of variation in virulence and reproduction in populations of an agricultural plant pathogen , 2020, bioRxiv.

[13]  B. McDonald,et al.  A 19-isolate reference-quality global pangenome for the fungal wheat pathogen Zymoseptoria tritici , 2019, BMC Biology.

[14]  Wei Fan,et al.  Whole Genome Re-sequencing Reveals Natural Variation and Adaptive Evolution of Phytophthora sojae , 2019, Front. Microbiol..

[15]  W. Stephan,et al.  Interspecific Gene Exchange Introduces High Genetic Variability in Crop Pathogen , 2019, Genome biology and evolution.

[16]  B. Thomma,et al.  A secreted LysM effector protects fungal hyphae through chitin-dependent homodimer polymerization , 2019, bioRxiv.

[17]  G. Kema,et al.  A dispensable paralog of succinate dehydrogenase subunit C mediates standing resistance towards a subclass of SDHI fungicides in Zymoseptoria tritici , 2019, bioRxiv.

[18]  David A. Fitzpatrick,et al.  Pan-genome analyses of model fungal species , 2019, Microbial genomics.

[19]  Ursula Oggenfuss,et al.  Stress-driven transposable element de-repression dynamics and virulence evolution in a fungal pathogen. , 2019, Molecular biology and evolution.

[20]  K. Hammond-Kosack,et al.  Phosphopantetheinyl transferase (Ppt)-mediated biosynthesis of lysine, but not siderophores or DHN melanin, is required for virulence of Zymoseptoria tritici on wheat , 2018, Scientific Reports.

[21]  James K. Hane,et al.  Pan-Parastagonospora Comparative Genome Analysis—Effector Prediction and Genome Evolution , 2018, Genome biology and evolution.

[22]  B. McDonald,et al.  Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat , 2018, BMC Biology.

[23]  James K. Hane,et al.  Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA Regions in Plant-Pathogenic Fungi. , 2018, Molecular plant-microbe interactions : MPMI.

[24]  K. Hammond-Kosack,et al.  Foxtail mosaic virus: A Viral Vector for Protein Expression in Cereals1[CC-BY] , 2018, Plant Physiology.

[25]  B. McDonald,et al.  Meiosis Leads to Pervasive Copy-Number Variation and Distorted Inheritance of Accessory Chromosomes of the Wheat Pathogen Zymoseptoria tritici , 2018, Genome biology and evolution.

[26]  M. Fisher,et al.  Worldwide emergence of resistance to antifungal drugs challenges human health and food security , 2018, Science.

[27]  E. Stukenbrock,et al.  Extraordinary Genome Instability and Widespread Chromosome Rearrangements During Vegetative Growth , 2018, Genetics.

[28]  K. Hammond-Kosack,et al.  Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici , 2018, Nature Genetics.

[29]  B. Thomma,et al.  Stress and sexual reproduction affect the dynamics of the wheat pathogen effector AvrStb6 and strobilurin resistance , 2018, Nature Genetics.

[30]  F. E. Hartmann,et al.  Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome , 2018, BMC Biology.

[31]  Hua Yu,et al.  Nucleoside diphosphate kinase (Ndk): A pleiotropic effector manipulating bacterial virulence and adaptive responses. , 2017, Microbiological research.

[32]  E. Stukenbrock,et al.  Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen Zymoseptoria tritici , 2017, mBio.

[33]  A. Lovegrove,et al.  A conserved fungal glycosyltransferase facilitates pathogenesis of plants by enabling hyphal growth on solid surfaces , 2017, PLoS pathogens.

[34]  E. Thines,et al.  Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici , 2017, PloS one.

[35]  Robert M. Waterhouse,et al.  BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics , 2017, bioRxiv.

[36]  B. McDonald,et al.  A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene. , 2017, The New phytologist.

[37]  B. McDonald,et al.  The genetic basis of local adaptation for pathogenic fungi in agricultural ecosystems , 2017, Molecular ecology.

[38]  B. McDonald,et al.  A fungal wheat pathogen evolved host specialization by extensive chromosomal rearrangements , 2017, The ISME Journal.

[39]  B. Kobe,et al.  Wheat PR-1 proteins are targeted by necrotrophic pathogen effector proteins. , 2016, The Plant journal : for cell and molecular biology.

[40]  B. McDonald,et al.  Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. , 2016, Molecular plant pathology.

[41]  Qingmin Wu,et al.  Analysis of pan-genome to identify the core genes and essential genes of Brucella spp. , 2016, Molecular Genetics and Genomics.

[42]  S. Raffaele,et al.  The two-speed genomes of filamentous pathogens: waltz with plants. , 2015, Current opinion in genetics & development.

[43]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[44]  Ethan L. Stewart,et al.  The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen , 2015, Genetics.

[45]  G. Steinberg Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection , 2015, Fungal genetics and biology : FG & B.

[46]  A. America,et al.  FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. , 2015, Fungal genetics and biology : FG & B.

[47]  S. Torriani,et al.  Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. , 2015, Fungal genetics and biology : FG & B.

[48]  K. Hammond-Kosack,et al.  Whole-genome analysis of Fusarium graminearum insertional mutants identifies virulence associated genes and unmasks untagged chromosomal deletions , 2015, BMC Genomics.

[49]  M. Saqi,et al.  Transcriptome and Metabolite Profiling of the Infection Cycle of Zymoseptoria tritici on Wheat Reveals a Biphasic Interaction with Plant Immunity Involving Differential Pathogen Chromosomal Contributions and a Variation on the Hemibiotrophic Lifestyle Definition1[OPEN] , 2015, Plant Physiology.

[50]  N. Hawkins,et al.  The evolution of fungicide resistance. , 2015, Advances in applied microbiology.

[51]  Yao Lu,et al.  Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus , 2014, Comput. Biol. Chem..

[52]  Rachel B. Brem,et al.  Expression Profiling of the Wheat Pathogen Zymoseptoria tritici Reveals Genomic Patterns of Transcription and Host-Specific Regulatory Programs , 2014, Genome biology and evolution.

[53]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[54]  K. Hammond-Kosack,et al.  Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. , 2014, Molecular plant-microbe interactions : MPMI.

[55]  G. Goldman,et al.  Aspergillus fumigatus calcineurin interacts with a nucleoside diphosphate kinase. , 2012, Microbes and infection.

[56]  Dong Li,et al.  Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations , 2012, Proceedings of the National Academy of Sciences.

[57]  J. Brownstein,et al.  Emerging fungal threats to animal, plant and ecosystem health , 2012, Nature.

[58]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[59]  Pablo Cingolani,et al.  Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift , 2012, Front. Gene..

[60]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[61]  Mark Yandell,et al.  MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects , 2011, BMC Bioinformatics.

[62]  J. Marsh,et al.  Aberrant protein N‐glycosylation impacts upon infection‐related growth transitions of the haploid plant‐pathogenic fungus Mycosphaerella graminicola , 2011, Molecular microbiology.

[63]  Paramvir S. Dehal,et al.  Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis , 2011, PLoS genetics.

[64]  K. Hammond-Kosack,et al.  Analysis of Two in Planta Expressed LysM Effector Homologs from the Fungus Mycosphaerella graminicola Reveals Novel Functional Properties and Varying Contributions to Virulence on Wheat1[W][OA] , 2011, Plant Physiology.

[65]  P. Solomon,et al.  Proteinaceous necrotrophic effectors in fungal virulence , 2010 .

[66]  Yongxiang Zhang,et al.  Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions , 2010, BMC Bioinformatics.

[67]  R. Oliver,et al.  A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens , 2010, Proceedings of the National Academy of Sciences.

[68]  K. Hammond-Kosack,et al.  Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola. , 2009, Molecular plant-microbe interactions : MPMI.

[69]  Richard G. F. Visser,et al.  Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella graminicola , 2009, PloS one.

[70]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[71]  P. Solomon,et al.  Host‐specific toxins: effectors of necrotrophic pathogenicity , 2008, Cellular microbiology.

[72]  K. Hammond-Kosack,et al.  The Wheat Mitogen-Activated Protein Kinases TaMPK3 and TaMPK6 Are Differentially Regulated at Multiple Levels during Compatible Disease Interactions with Mycosphaerella graminicola1[W] , 2008, Plant Physiology.

[73]  Terry Roemer,et al.  Essential Gene Identification and Drug Target Prioritization in Aspergillus fumigatus , 2007, PLoS pathogens.

[74]  K. Hammond-Kosack,et al.  Transcriptional adaptation of Mycosphaerella graminicola to programmed cell death (PCD) of its susceptible wheat host. , 2007, Molecular plant-microbe interactions : MPMI.

[75]  E. Stukenbrock,et al.  Origin and domestication of the fungal wheat pathogen Mycosphaerella graminicola via sympatric speciation. , 2006, Molecular biology and evolution.

[76]  M. Stanhope,et al.  Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition , 2007, Genome Biology.

[77]  S. Osmani,et al.  Identification and analysis of essential Aspergillus nidulans genes using the heterokaryon rescue technique , 2006, Nature Protocols.

[78]  J. Heitman Sexual Reproduction and the Evolution of Microbial Pathogens , 2006, Current Biology.

[79]  Burkhard Morgenstern,et al.  Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources , 2006, BMC Bioinformatics.

[80]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  B. McDonald,et al.  The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. , 2003, Fungal genetics and biology : FG & B.

[82]  Y. Ogura,et al.  Putative Functions of Nucleoside Diphosphate Kinase in Plants and Fungi , 2003, Journal of bioenergetics and biomembranes.

[83]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[84]  B. McDonald,et al.  Population Structure of Mycosphaerella graminicola: From Lesions to Continents. , 2002, Phytopathology.

[85]  B. McDonald,et al.  Distribution of mating type alleles in the wheat pathogen Mycosphaerella graminicola over spatial scales from lesions to continents. , 2002, Fungal genetics and biology : FG & B.

[86]  L. Zwiers,et al.  Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola , 2001, Current Genetics.

[87]  C. Mundt,et al.  Measuring Immigration and Sexual Reproduction in Field Populations of Mycosphaerella graminicola. , 1998, Phytopathology.

[88]  G. Kema,et al.  Genetic Variation for Virulence and Resistance in the Wheat-Mycosphaerella graminicola Pathosystem III. Comparative Seedling and Adult Plant Experiments. , 1997, Phytopathology.

[89]  G. Kema,et al.  Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. 11. Analysis of interactions between pathogen isolates and host cultivars , 1996 .

[90]  M. Shaw,et al.  Histology of the pathogenesis of Mycosphaerella graminicola in wheat , 1996 .