Phase Selection and Mechanical Properties of CoCrFexNiMn Multicomponent Alloys With Equivalent Electron Concentrations

[1]  D. Raabe,et al.  Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys , 2021, Science.

[2]  Zemin Wang,et al.  Microstructures and hardnesses of AlCoCr0.5FexNi2.5 high entropy alloys with equal valence electron concentration , 2020 .

[3]  N. Park,et al.  TWIP and TRIP-associated mechanical behaviors of Fe (CoCrMnNi) medium-entropy ferrous alloys , 2020 .

[4]  R. Zhao,et al.  Transformation-enhanced strength and ductility in a FeCoCrNiMn dual phase high-entropy alloy , 2020 .

[5]  Zonghan Xie,et al.  Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys , 2020 .

[6]  R. Zhao,et al.  Microstructure and mechanical properties of Fe CoCrNiMn high-entropy alloys , 2019, Journal of Materials Science & Technology.

[7]  H. Jafarian,et al.  Experimental investigation and phase diagram of CoCrMnNi–Fe system bridging high-entropy alloys and high-alloyed steels , 2019, Journal of Alloys and Compounds.

[8]  B. Murty,et al.  Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys , 2019, Journal of Alloys and Compounds.

[9]  L. Dai,et al.  Strong resistance to hydrogen embrittlement of high-entropy alloy , 2018, Materials Science and Engineering: A.

[10]  B. Li,et al.  Comparison of the structure and properties of equiatomic and non-equiatomic multicomponent alloys , 2018 .

[11]  D. Raabe,et al.  Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity , 2017 .

[12]  C. Tasan,et al.  Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys , 2017, Scientific Reports.

[13]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[14]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[15]  C. Tasan,et al.  Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys , 2015 .

[16]  J. Seol,et al.  Nano-scale observation on the transformation behavior and mechanical stability of individual retained austenite in CMnSiAl TRIP steels , 2015 .

[17]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[18]  Wei Zhang,et al.  High-Entropy Alloys with a Hexagonal Close-Packed Structure Designed by Equi-Atomic Alloy Strategy and Binary Phase Diagrams , 2014 .

[19]  Zikang Tang,et al.  Guidelines in predicting phase formation of high-entropy alloys , 2014 .

[20]  Oleg N. Senkov,et al.  Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys , 2014 .

[21]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[22]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[23]  T. G. Nieh,et al.  Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy , 2013 .

[24]  C. Liu,et al.  Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys , 2011 .

[25]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[26]  J. Banhart,et al.  Effect of decomposition of the Cr-Fe-Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. , 2011, Ultramicroscopy.

[27]  Wenquan Cao,et al.  Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite , 2010 .

[28]  I. Solomon,et al.  Deformation induced martensite in AISI 316 stainless steel , 2010 .

[29]  Z. Tourki,et al.  The kinetic of induced martensitic formation and its effect on forming limit curves in the AISI 304 stainless steel , 2005 .

[30]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[31]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[32]  T. Shun,et al.  Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating , 2004 .

[33]  I. Tamura,et al.  Deformation-induced martensitic transformation and transformation-induced plasticity in steels , 1982 .

[34]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[35]  M. Gao,et al.  High-Entropy Alloys: Fundamentals and Applications , 2016 .