Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst

MetaboAnalyst is an integrated web-based platform for comprehensive analysis of quantitative metabolomic data. It is designed to be used by biologists (with little or no background in statistics) to perform a variety of complex metabolomic data analysis tasks. These include data processing, data normalization, statistical analysis and high-level functional interpretation. This protocol provides a step-wise description on how to format and upload data to MetaboAnalyst, how to process and normalize data, how to identify significant features and patterns through univariate and multivariate statistical methods and, finally, how to use metabolite set enrichment analysis and metabolic pathway analysis to help elucidate possible biological mechanisms. The complete protocol can be executed in ∼45 min.

[1]  P. Pavlidis Using ANOVA for gene selection from microarray studies of the nervous system. , 2003, Methods.

[2]  David S. Wishart,et al.  MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids , 2008, BMC Bioinformatics.

[3]  David I. Ellis,et al.  Metabolomics: Current analytical platforms and methodologies , 2005 .

[4]  Gabi Kastenmüller,et al.  Variation in the human lipidome associated with coffee consumption as revealed by quantitative targeted metabolomics. , 2009, Molecular nutrition & food research.

[5]  David S. Wishart,et al.  HMDB: a knowledgebase for the human metabolome , 2008, Nucleic Acids Res..

[6]  David S. Wishart,et al.  MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data , 2010, Nucleic Acids Res..

[7]  David S. Wishart,et al.  Current Progress in computational metabolomics , 2007, Briefings Bioinform..

[8]  Jian Yang,et al.  Metabolomics spectral formatting, alignment and conversion tools (MSFACTs) , 2003, Bioinform..

[9]  Arjen Lommen,et al.  MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. , 2009, Analytical chemistry.

[10]  Georg F. Weiller,et al.  PathExpress: a web-based tool to identify relevant pathways in gene expression data , 2007, Nucleic Acids Res..

[11]  Tao Wang,et al.  Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis , 2009, BMC Bioinformatics.

[12]  Age K. Smilde,et al.  UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .

[13]  R. A. van den Berg,et al.  Centering, scaling, and transformations: improving the biological information content of metabolomics data , 2006, BMC Genomics.

[14]  Egon L. Willighagen,et al.  The Chemical Translation Service—a web-based tool to improve standardization of metabolomic reports , 2010, Bioinform..

[15]  Georg F. Weiller,et al.  PathExpress update: the enzyme neighbourhood method of associating gene-expression data with metabolic pathways , 2009, Nucleic Acids Res..

[16]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[17]  Yan Wang,et al.  VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology , 2009, Nucleic Acids Res..

[18]  Aalim M Weljie,et al.  Quantitative 1H NMR metabolomics reveals extensive metabolic reprogramming of primary and secondary metabolism in elicitor-treated opium poppy cell cultures , 2008, BMC Plant Biology.

[19]  Peter Lundberg,et al.  MDL– the magnetic resonance metabolomics database , 2005 .

[20]  Joachim Selbig,et al.  pcaMethods - a bioconductor package providing PCA methods for incomplete data , 2007, Bioinform..

[21]  Jens Stoye,et al.  MeltDB: a software platform for the analysis and integration of metabolomics experiment data , 2008, Bioinform..

[22]  Gabi Kastenmüller,et al.  metaP-Server: A Web-Based Metabolomics Data Analysis Tool , 2010, Journal of biomedicine & biotechnology.

[23]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[25]  Nicola Zamboni,et al.  High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. , 2009, Analytical chemistry.

[26]  Alexander Erban,et al.  TagFinder for the quantitative analysis of gas chromatography - mass spectrometry (GC-MS)-based metabolite profiling experiments , 2008, Bioinform..

[27]  David S. Wishart,et al.  MetaboAnalyst: a web server for metabolomic data analysis and interpretation , 2009, Nucleic Acids Res..

[28]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[29]  Ulrich Mansmann,et al.  GlobalANCOVA: exploration and assessment of gene group effects , 2008, Bioinform..

[30]  John L Markley,et al.  Metabolite identification via the Madison Metabolomics Consortium Database , 2008, Nature Biotechnology.

[31]  David S. Wishart,et al.  SMPDB: The Small Molecule Pathway Database , 2009, Nucleic Acids Res..

[32]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[33]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[34]  R. Abagyan,et al.  METLIN: A Metabolite Mass Spectral Database , 2005, Therapeutic drug monitoring.

[35]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .

[36]  Matej Oresic,et al.  MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data , 2006, Bioinform..

[37]  H. Senn,et al.  Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. , 2006, Analytical chemistry.

[38]  Benno Schwikowski,et al.  Graph-based methods for analysing networks in cell biology , 2006, Briefings Bioinform..

[39]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[41]  Erin E. Carlson,et al.  Targeted profiling: quantitative analysis of 1H NMR metabolomics data. , 2006, Analytical chemistry.

[42]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[43]  Scott J. Hultgren,et al.  Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli , 2009, PLoS pathogens.

[44]  David S. Wishart,et al.  Quantitative metabolomics using NMR , 2008 .

[45]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[46]  A. Smilde,et al.  Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation. , 2006, Analytical chemistry.

[47]  Alexander R. Pico,et al.  GenMAPP 2: new features and resources for pathway analysis , 2007, BMC Bioinformatics.

[48]  Qi Zhao,et al.  HiRes - a tool for comprehensive assessment and interpretation of metabolomic data , 2006, Bioinform..

[49]  Corey D Broeckling,et al.  MET-IDEA: data extraction tool for mass spectrometry-based metabolomics. , 2006, Analytical chemistry.