Absolutely s-Pure Modules and Neat-Flat Modules

Let R be a ring with an identity element. We prove that R is right Kasch if and only if injective hull of every simple right R-modules is neat-flat if and only if every absolutely pure right R-module is neat-flat. A commutative ring R is hereditary and noetherian if and only if every absolutely s-pure R-module is injective and R is nonsingular. If every simple right R-module is finitely presented, then (1) R R is absolutely s-pure if and only if R is right Kasch and (2) R is a right -CS ring if and only if every pure injective neat-flat right R-module is projective if and only if every absolutely s-pure left R-module is injective and R is right perfect. We also study enveloping and covering properties of absolutely s-pure and neat-flat modules. The rings over which every simple module has an injective cover are characterized.

[1]  Katharina Weiss,et al.  Lectures On Modules And Rings , 2016 .

[2]  S. Crivei NEAT AND CONEAT SUBMODULES OF MODULES OVER COMMUTATIVE RINGS , 2014 .

[3]  Yılmaz Durǧun,et al.  Neat-flat Modules , 2013 .

[4]  D. Huynh,et al.  Some Results on V-rings and Weakly V-rings , 2013 .

[5]  László Fuchs,et al.  Neat submodules over integral domains , 2012, Period. Math. Hung..

[6]  L. Mao MODULES CHARACTERIZED BY THEIR SIMPLE SUBMODULES , 2011 .

[7]  Yueming Xiang MAX-INJECTIVE, MAX-FLAT MODULES AND MAX-COHERENT RINGS , 2010 .

[8]  L. Sandomierski NONSINGULAR RINGS , 2010 .

[9]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[10]  C. Santa-Clara,et al.  Injectivity relative to closed submodules , 2009 .

[11]  J. Rada,et al.  Projective envelopes of finitely generated modules , 2011 .

[12]  Katherine Pinzón Absolutely Pure Covers , 2008 .

[13]  B. Torrecillas,et al.  ON SOME MONIC COVERS AND EPIC ENVELOPES , 2008 .

[14]  Peter Jørgensen,et al.  Covers, precovers, and purity , 2008 .

[15]  L. Mao When Does Every Simple Module Have a Projective Envelope? , 2007 .

[16]  Nanqing Ding,et al.  FI-injective and FI-flat modules , 2007 .

[17]  Guo Zhao,et al.  On Maximal Injectivity , 2005 .

[18]  Iuliu Crivei,et al.  S-pure Submodules , 2005, Int. J. Math. Math. Sci..

[19]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[20]  J. McConnell,et al.  Noncommutative Noetherian Rings , 2001 .

[21]  A. Facchini Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules , 1998 .

[22]  J. Rada,et al.  Rings characterized by (pre)envelopes and (pre)covers of their modules , 1998 .

[23]  Jinzhong Xu Flat covers of modules , 1996 .

[24]  B. Torrecillas,et al.  Relative injective covers , 1994 .

[25]  K. Oshiro Lifting modules, extending modules and their applications to \textit{QF}-rings , 1984 .

[26]  T. Cheatham,et al.  Flat and projective character modules , 1981 .

[27]  D. Simson,et al.  Purity and generalized chain conditions , 1979 .

[28]  E. G. Sklyarenko,et al.  RELATIVE HOMOLOGICAL ALGEBRA IN CATEGORIES OF MODULES , 1978 .

[29]  A. Mišina,et al.  Abelian groups and modules , 1976 .

[30]  R. Colby Rings which have flat injective modules , 1975 .

[31]  K. Goodearl Singular torsion and the splitting properties , 1972 .

[32]  C. Megibben Absolutely pure modules , 1970 .

[33]  B. Stenström High submodules and purity , 1967 .

[34]  B. Stenström Pure submodules , 1967 .

[35]  David A. Buchsbaumi A NOTE ON HOMOLOGY IN CATEGORIES , 1959 .