Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode.

Low-temperature-processed (100 °C) carbon paste was developed as counter electrode material in hole-conductor free perovskite/TiO2 heterojunction solar cells to substitute noble metallic materials. Under optimized conditions, an impressive PCE value of 8.31% has been achieved with this carbon counter electrode fabricated by doctor-blading technique. Electrochemical impedance spectroscopy demonstrates good charge transport characteristics of low-temperature-processed carbon counter electrode. Moreover, this carbon counter electrode-based perovskite solar cell exhibits good stability over 800 h.

[1]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[2]  T. Kitamura,et al.  Enhancement of electron transport in nano-porous TiO2 electrodes by dye adsorption , 2003 .

[3]  Edward H. Sargent Colloidal quantum dot solar cells , 2012 .

[4]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[5]  Aram Amassian,et al.  Hybrid passivated colloidal quantum dot solids. , 2012, Nature nanotechnology.

[6]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[7]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[8]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[9]  Konrad Wojciechowski,et al.  Sub 150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency (presentation video) , 2014, Optics & Photonics - Photonic Devices + Applications.

[10]  Ivan Mora-Sero,et al.  Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[11]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[12]  Yaoguang Rong,et al.  Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell , 2014 .

[13]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[14]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[15]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[16]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[17]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[18]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[19]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[20]  T. Oku,et al.  Fabrication and Characterization of TiO2/CH3NH3PbI3-based Photovoltaic Devices , 2014 .

[21]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[22]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[23]  Guozhong Cao,et al.  Nanomaterials for energy conversion and storage. , 2013, Chemical Society reviews.

[24]  G. Papavassiliou,et al.  Synthetic Three-and Lower-Dimensional Semiconductors Based on Inorganic Units , 1996 .

[25]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[26]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[27]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[28]  Edward H. Sargent,et al.  Schottky barriers to colloidal quantum dot films , 2007 .

[29]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[30]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[31]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[32]  Yaoguang Rong,et al.  Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. , 2014, The journal of physical chemistry letters.

[33]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[34]  Matt Law,et al.  Schottky solar cells based on colloidal nanocrystal films. , 2008, Nano letters.

[35]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[36]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[37]  W. Schottky,et al.  Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter , 1942 .

[38]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[39]  Yang Yang,et al.  Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency , 2013, Scientific Reports.

[40]  Yanhong Luo,et al.  Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[41]  Cesare Soci,et al.  Perovskite Solar Cells , 2016 .

[42]  A. Dillon,et al.  Carbon nanotubes for photoconversion and electrical energy storage. , 2010, Chemical reviews.

[43]  T. Ma,et al.  Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes , 2011 .

[44]  Arie Zaban,et al.  ELECTRIC POTENTIAL DISTRIBUTION AND SHORT-RANGE SCREENING IN NANOPOROUS TIO2 ELECTRODES , 1997 .

[45]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[46]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.